
THE
PRIME USER'S

GUIDE

PDR 4130

SPSS

FORMS

MIDAS

PRIME/POWER

Data Subsystems

P

PRIMENET

DPTX |

REMOTE
JOB ENTRY

Communications

o

DBMS SCHEMA

DBMS FORTRAN

q

DBMS COBOL

DBMS
ADMINISTRATOR

Data Base
Management

PMA

SYSTEM
ARCHITECTURE

System Architecture
And Assembly Language

0

Pascal

PL/I SUBSET G

FORTRAN 77

FORTRAN IV

RPGII

COBOL

PRIME
USER'S
GUIDE

High-Level
Language Guides

0

BASIC

BASIC/VM

BASIC

SYSTEM ADMIN

fJEBUGGER

SUBROUTINES

LOAD/SEG

CPL

H

PRIMOS
COMMANDS

PRIMOS
Detailed Reference

o
NEW USER'S
GUIDE TO
EDITOR/RUNOFF

Text Editing
And Formatting

£1
SYSTEM ADMIN

ADV. TEXT MGMT.

MCS

WORD
PROCESSING
GUIDE

Office Automation

The Prime User's Guide
EDR4130

This guide documents the software operation of the Prime Computer and
i t s supporting systems and u t i l i t i e s as implemented a t Master Disk
Revision Level 18 (Rev. 18).

PRIME Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated
500 Old Connecticut Path

Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
1icense.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing December 1980

All correspondence on suggested changes to this document should be
directed to:

Alice Landy
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

li

PDR4130 CONTENTS

CONTENTS

PART I . USING PRIME DOCUMENTATION

1 INTRODUCTION

What This Book Contains 1-1
HDW t o Use This Book 1-3
HDW to Use the Rest of Pr ime 's Documentation 1-3
Programmer's Companions 1-9

PART II. WRITING AND RUNNING PROGRAMS

2 BEFORE YOU GET STARTED

Introduction 2-1
Introducing PRIMOS 2-1
Using the File System 2-2
System Prompts 2-6
Conventions 2-7
Terminal Keyboard 2-8
Special Terminal Keys 2-10
Special Characters 2-10
Setting Terminal Characteristics 2-12

3 ACCESSING PRIMOS

Introduction 3-1
Accessing the System 3-3
Directory Operations 3-3
System Information 3-6
File Operations 3-9
Completing a Work Session 3-11

4 CREATING SOURCE FILES

Enter ing and Modifying Programs — The EDITOR 4-1
E d i t o r ' s Error Messages 4-4
Basic Edi tor Commands 4-4
Sample Edi t ing Sess ions 4-19
Lis t ing Programs 4-22
P r in t i ng F i l e s with the Spool Comand 4-22
P r in t i ng Several F i l e s in One with the CONCAT Command 4-25

i i i December 1980

CONTENTS PDR4130

5 COMPILING PROGRAMS

Invoking the Compiler 5-1
Object Files 5-3
Listing Files 5-4
Cross Reference 5-5
Code Generation 5-5
Loading 5-6
Compiler Messages 5-6
Combining Languages in a Program 5-6

6 LOAD GENERATION

In t roduc t ion 6-1
SEG 6-1
Using SEG Under PRIMOS 6-1
Normal Loading 6-2
The R-Mode Loader 6-6
Using the Loader under PRIMOS 6-6
Normal Loading 6-7

7 RUNNING PROGRAMS INTERACTIVELY

Overview 7-1
Executing Segmented Runfi les 7-2
Executing R-Mode Memory Images 7-3
Run-time Error Messages 7-4

8 THE BASICS OF CPL

What i s CPL? 8-1
Learning CPL 8-1
How Does CPL Work? 8-1
Creat ing and Executing CPL Programs 8-3
Debugging CPL Programs 8-3
Using PRIMOS Commands in CPL Programs 8-5
CPL D i r e c t i v e s 8-6
Using Var iab les in CPL Programs 8-8
Decision-making (Branching) in CPL Programs 8-11
&Eo Groups 8-14
Using Functions in CPL Programs 8-15
Using CPL with Subsystems: &Data Groups 8-16

How CPL Programs End: The ScReturn D i r ec t i ve 8-18

9 COMMAND FILES AND PHANTOMS

Introduction 9-1
Command File Requirements 9-1
The COMINPUT Command 9-2
The CCMOUTPUT Command 9-5
Using DATE and TIME in Command Files 9-7
Phantom Users 9-10

December 1980 iv

PDR4130 CONTENTS

10 BATCH JOB PROCESSING

In t roduc t ion 10-1
Using t h e Batch Subsystem 10-1
Submitting Batch Jobs 10-2
Supplying Options v i a the $$ Command 10-4
Cont ro l l ing Batch Jobs 10-5
Monitoring Batch 10-6

PART I I I . SYSTEM FACILITIES

11 FILE-HANDLING UTILITIES

In t roduc t ion 11-1
Sor t ing F i l e s (SORT) 11-1
F i l e Comparison (CMPF) 11-7
Merging Text F i l e s (MRGF) 11-9
F i l e U t i l i t y (FUTIL) 11-9
FUTIL Command Summary 11-14

12 USING TAPES AND CARDS

Accessing Data on Tapes and Cards 12-1
Reading Punched Cards 12-2
Reading Punched Paper Tape 12-3
Magnetic Tape U t i l i t i e s 12-3
Using ASSIGN 12-7
Releasing A Tape Drive 12-10
MAG Tape Operat ions 12-10
The MAGNET U t i l i t y 12-11
Dupl icat ing Magnetic Tapes 12-13

13 USING PRIMENET

Introduction 13-1
Remote Login 13-1
Attaching to Remote Directories 13-3
Accessing Remote Systems and Networks 13-4

14 SUBROUTINE LIBRARIES

Applications Library 14-1
Sort and Search Libraries 14-8
Operating System Library 14-10

v December 1980

CONTENTS PDR4130

PART IV. THE COMMAND ENVIRONMENT

15 CUSTOMIZING YOUR ENVIRONMENT

Changing the Prompt Message 15-1
Creating and Using Abbreviations (ABBREV) 15-2
Using Global Variables 15-5

Sending Messages 15-6

16 USING THE CONDITION MECHANISM

In t roduc t ion 16-1
Using the Condition Mechanism 16-2
The System Default On-unit 16-2
On-unit Actions 16-3
Writing On-units 16-3
Scope of On-units 16-4
A For t ran Example 16-5

APPENDICES

A GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

B SYSTEM DEFAULTS AND CONSTANTS

C ASCII CHARACTER SET

D ERROR MESSAGES

E EDITOR COMMAND SUMMARY

December 1980 vi

Rati
Using Prime l̂ xjumentatton

PDR4130 INTRODUCTION

SECTION 1

INTRODUCTION

WHAT THIS BOOK CONTAINS

The Prime U s e r ' s Guide i s an i n t roduc t ion and overview t o programming
in a h i g h - l e v e l language on a Prime computer. I t c o n t a i n s a l l the
information new users need to get s ta r ted on a Prime system, and
provides a road map for new and experienced users a l ike tha t t e l l s
what's available for Prime computers and where to locate information
about i t .

This guide i s divided into four pa r t s .

Part I contains an introduction (Section 1) , which t e l l s how to use
th i s book and provides an annotated guide to Prime's features and
documentation.

Part II introduces users to PRIMOS (Prime's Operating System) and
ca r r i e s them s tep by s tep through the ac t s of creat ing and running a
program, as follows:

• Section 2 introduces Prime's operating system, PRIMOS, and i t s
f i l e management system (FMS) .

• Section 3 t e l l s how to access the system: how to log in ; how
to c r ea t e , manipulate, l i s t and dele te f i l e s and d i r e c t o r i e s ;
and how to log out when you're done.

• Section 4 explains how to enter f i l e s (programs, t ex t f i l e s , and
data f i l e s) , using Prime's ed i tor ; and how to get f i l e s printed
on the l ine p r i n t e r .

• Section 5 provides an introduction to compiling programs under
PRIMOS. Simple programs can be compiled from the information
given in t h i s guide. For more complex programs, or programs for
which the programmer wishes to use the advanced features of
Prime's compilers, the programmer should consult the specif ic
language reference guide.

• Section 6 provides an introduction to l inking and loading
programs with Prime's two loaders , SEG and LOAD. The
information in t h i s section enables users to load simple
programs. The language guides provide information on
language-specific fea tures ; the LOAD and SEG Reference Guide
provides full information on advanced techniques.

• Section 7 provides an introduction to executing programs
in t e r ac t ive ly . (Language-specific d e t a i l s on execution and
debugging are provided by your language guide.)

December 1980

SECTION 1 PDR4130

• Sect ion 8 in t roduces Pr ime 's command procedure l anguage , CPL,
and shows how to wr i t e command procedure f i l e s for i n t e r a c t i v e
or n o n - i n t e r a c t i v e running of programs.

• Sect ion 9 t e l l s how to c r e a t e command input and ou tpu t f i l e s for
the n o n - i n t e r a c t i v e running of programs, how t o execu te command
f i l e s from the t e r m i n a l , and how t o execute command f i l e s a s
phantoms (i . e . , as independent p rocesses not connected with your
t e r m i n a l) .

• Sect ion 10 p rov ides f u l l information on how t o execute programs
using Pr ime 's batch processing environment.

Par t I I I , System F a c i l i t i e s , provides an i n t r o d u c t i o n to the r e sou rces
a v a i l a b l e on your Prime system.

• Sect ion 11 t e l l s how to use four f i l e - h a n d l i n g u t i l i t i e s :

- SORT, which s o r t s and merges f i l e s

- CMPF, which compares f i l e s and no t e s d i s p a r i t i e s

- MRGF, which c r e a t e s one updated f i l e ou t of s e v e r a l d i s p a r a t e
f i l e s

- FUTIL, which moves, c o p i e s , l i s t s , and d e l e t e s both f i l e s and
complete d i r e c t o r i e s

• Sect ion 12 exp l a in s how to handle magnetic t a p e s , punched c a r d s ,
and punched paper t apes on Prime.

• Sect ion 13 exp la in s PRIMENET, Pr ime 's networking f a c i l i t y , and
t e l l s how u s e r s can take advantage of i t .

• Section 14 provides a se l ec ted l i s t of important s u b r o u t i n e s and
l i b r a r i e s a v a i l a b l e for use by h i g h - l e v e l language programs.

Par t IV prov ides a more advanced look a t PRIMOS. In p a r t i c u l a r , i t
duscusses s eve ra l ways in which you can a l t e r t h e command environment
on a t e rmina l -by - t e rmina l or program-by-program b a s i s .

• Sect ion 15 shows how you can def ine your own a b b r e v i a t i o n s for
PRIMOS commands (via the ABBREV command) and how you can modify
the system prompts with the RDY command.

• Sect ion 16 exp la in s PRIMOS1s condi t ion mechanism and shows how
u s e r s can w r i t e t h e i r own o n - u n i t s (e r ro r -hand l ing s u b r o u t i n e s) .

In add i t i on to the body of the t e x t , t h i s gu ide prov ides t he fol lowing
appendices :

• A g l o s s a r y of terms used in Prime documentation

• A l i s t of system d e f a u l t s and c o n s t a n t s

REV. 0

PDR4130 INTRODUCTION

• The ASCII c h a r a c t e r s e t

• A l i s t of system e r r o r messages

• A summary of Edi tor commands

HOW TO USE THIS BOOK

We suggest t h a t you:

• Read Sec t ions 1-4 before beginning to work on the sys tem.

• Read Sec t ions 6-10 before you t r y to compi le , load or run
programs.

• Use Sec t ions 11 through 14 as r e fe rence s e c t i o n s :

- Sect ion 11 i f you need to s o r t , compare, or merge f i l e s , or
move whole d i r e c t o r i e s from place to p lace

- Sect ion 12 i f you need to use mag t a p e s , c a r d s , or paper t ape

- Sect ion 13 i f t he computer you work on i s p a r t of a network

- Sect ion 14 t o f ind ou t whether PRIMOS has a sub rou t ine or
u t i l i t y t h a t does some t a sk you need to d o , or whether y o u ' l l
have to w r i t e your own

• Read Sec t ions 15 and 16 when you've become somewhat f ami l i a r
with t he sys tem, to d iscover some more s o p h i s t i c a t e d
conveniences PRIMOS can o f f e r you.

• Refer to t h e g l o s s a r y in Appendix A i f you encounter any terms
you d o n ' t r e c o g n i z e .

HOW TO USE THE REST OF PRIME'S DOCUMENTATION

If t h i s U s e r ' s Guide provided a l l the information you'd ever need to do
any th ing , i t would be about a foot t h i c k . Therefore , Sec t ions 2
through 16 c o n t a i n enough information t o g e t you s t a r t e d on j u s t about
e v e r y t h i n g . And the r e s t of t h i s s e c t i o n s u p p l i e s a road map t o a l l
our o the r documenta t ion: the books t h a t do t e l l yo*u " a l l you need to
know." (T i t l e s followed by a s t e r i s k s document s e p a r a t e l y p r iced
produc ts .)

December 1980

SECTION 1 PDR4130

The Central Guides

The r e l a t i o n s h i p between these books i s i l l u s t r a t e d in Figure 1-1.
This u s e r ' s guide i s the c e n t e r : the s t a r t i n g p l a c e . Backing i t up
a r e the h i g h - l e v e l language g u i d e s , which:

• Provide f u l l language re fe rence m a t e r i a l s

• Explain the compi lers in d e t a i l , showing t he use of a l l o p t i o n s

• Explain any l anguage-spec i f i c t echniques of program development

• Discuss advanced techniques for l o a d i n g , o p t i m i z i n g , and
debugging programs

Language gu ides c u r r e n t l y a v a i l a b l e a r e :

• The FORTRAN 77 Reference Guide*

• The FORTRAN Reference Guide

• The COBOL Reference Guide*

• The PL/1 Subset G Reference Guide*

• The RPG I I Reference Guide (and the RPG I I Debugging Template)

• The Pascal Reference Guide*

More Deta i led References

The commands and u t i l i t i e s explained in t h i s gu ide and the language
gu ides w i l l c a r r y most a p p l i c a t i o n s programmers through most of t h e i r
work. For those who need more d e t a i l e d r e f e r e n c e s , each t o p i c
d i scussed in t h i s book i s t r e a t e d more f u l l y in our r e f e r ence g u i d e s .
The re fe rence gu ides t h a t a p p l i c a t i o n s programmers a r e most l i k e l y to
use a r e :

• The PRIMPS Commands Reference Guide, which d i s c u s s e s a l l PRIMOS
l e v e l commands a v a i l a b l e to the u s e r .

• The CPL User ' s Guide, which d e s c r i b e s how to use Pr ime ' s Command
Procedure Language.

• The Subrout ines Reference Guide, which t e l l s how t o i nco rpo ra t e
i n to your own programs the va r i ous s u b r o u t i n e s supp l ied by
Prime.

• The LOAD and SEG Reference Guide, which p rov ides a f u l l
d i s c u s s i o n of Pr ime ' s l oade r s for u se r s i n t e r e s t e d in t ak ing
advantage of t h e i r advanced f e a t u r e s .

REV. 0

PDR4130 INTRODUCTION

SPSS

FORMS

1 MIDAS

PRIME/POWER

Data Subsystems

P

PRIMENET

DPTX

REMOTE
JOB ENTRY

Communications

o

DBMS SCHEMA

DBMS FORTRAN

q

DBMS COBOL

DBMS
ADMINISTRATOR

Data Base
Management

PMA

SYSTEM
ARCHITECTURE

System Architecture
And Assembly Language

4

PL/I SUBSET G

FORTRAN 77

FORTRAN IV |

RPGII

| COBOL

', V" * ' :*

PRIME
USER'S
GUIDE

High-Level
Language Guides

0

BASIC

BASIC

SYSTEM ADMIN.

DEBUGGER

SUBROUTINES

LOAD/SEG

H

PRIMOS
COMMANDS

PRIMOS
Detailed Reference

o
NEWUSER'S
GUIDE TO
EDITOR/RUNOFF

Text Editing
And Formatting

a
SYSTEM ADMIN

ADV. TEXT MGMT.

MCS

WORD
PROCESSING
GUIDE

Office Automation

Figure 1-1 . Organizat ion of Prime Docunentation

December 1980

SECTION 1 PDR4130

• The Source-Level Debugger Reference Guide,* which prov ides both
i n t r o d u c t o r y and f u l l d i s c u s s i o n s on the use of P r ime ' s
i n t e r a c t i v e debugger for FORTRAN, FORTRAN 77, and PL/I programs.

A re fe rence guide for o p e r a t o r s and system a d m i n i s t r a t o r s i s :

• The System A d m i n i s t r a t o r ' s Guide, which t e l l s how to c o n f i g u r e ,
b r ing up , and mainta in a Prime system.

BASIC

BASIC is implemented on Prime computers as a fully interactive,
self-contained environment. Wbrking in BASIC, a programmer can write,
compile, execute, and debug a program while remaining inside the BASIC
environment. Prime's guides to working with BASIC, therefore, are
similarly self-contained, providing both full explanations of all BASIC
features and all introductory material needed to get the new user onto
the system. The guides are:

• I n t e r p r e t i v e BASIC

• The BASIC/VM Programmer's Guide*

Assembly Language

For assembly language programmers, and for anyone i n t e r e s t e d in
l ea rn ing about Pr ime 's computer a r c h i t e c t u r e , t h e r e a r e :

• The PMA Programmer's Guide

• The System Arch i t ec tu r e Reference Guide

Prime a l so s u p p l i e s a number of gu ides t h a t dea l with more s p e c i f i c
a p p l i c a t i o n s .

Text Edi t ing

For u s e r s concerned with t e x t e d i t i n g or formatted p r i n t o u t s , t h e r e i s :

• The New User ' s Guide to Editor and Runoff

This guide e x p l a i n s in f u l l d e t a i l Pr ime 's e d i t o r (ED) and i t s t e x t
formatt ing u t i l i t y (RUNOFF). (Aimed a t u se r s who may no t be
programmers, t h i s guide a l s o provides a l e s s t e c h n i c a l i n t r o d u c t i o n to
Prime software for s e c r e t a r i e s , t y p i s t s and da t a e n t r y pe r sonne l .)

REV. 0

PDR4130 INTRODUCTION

Data Subsystems

POWER is an easy-to-use data management system with English-like
commands that allow the user to create, access, update, and report on
MIDAS, ASCII, or binary files. POWER files are compatible with (and
can be accessed from) BASIC/VM, COBOL, and FORTRAN programs. The guide
to using POWER is:

• The PRIME/POWER Guide*

MIDAS - the Multiple Index Data Access System - creates and maintains
keyed-index data files to hold large amounts of information in a
quickly accessible format. MIDAS files are handled through a variety
of high-level language interfaces. Applications programmers working
with MIDAS files can consult the:

• MIDAS User's Guide

FORMS allows applications programmers to design screen formats (such as
representations of business forms), to store the formats in a directory
and to write applications programs that use these screen formats to
facilitate data entry. The guide that explains how to do it is:

• The FORMS Guide*

SPSS - a statistical package for the sopial sciences - is useful to
applications programmers who need statistical tools for data handling.
The use of SPSS on Prime computers is explained in:

• Tne SPSS Guide*

Data Base Management

Four guides document Prime's data base management system. Programmers
writing data base appl icat ions programs in FORTRAN or COBOL should
consul t :

• Tne DBMS FORTRAN Reference Guide*

• Tne DBMS COBOL Reference Guide*

Data base administrators concerned with se t t ing up and maintaining a
data base, use:

• Tne DBMS Administrator 's Guide*

• Tne DBMS Schema Reference Guide*

December 1980

SECTION 1 PDR4130

Communications

If you a r e i n s t a l l i n g a network (or i f your i n s t a l l a t i o n i s on a
network and you ' r e cu r ious about the d e t a i l s) ; or i f you a r e w r i t i n g
programs concerned with network func t i ons , t he guide you want i s :

• The PRIMENET Guide*

If your i n s t a l l a t i o n has (or i s g e t t i n g) DPTX (Dis t r ibu ted Process ing
Terminal Execu t ive) , and you ' r e involved with i t , y o u ' l l want:

• The Di s t r i bu ted Processing Terminal Executive Guide*

If your work involves any of the remote ba tch te rmina l emula tors -
HASP, RJE2780, RJE3780, 200UT, 1004, GRTS, or ICL 7020 - you can f ind
out how to handle them i n :

• The Remote Job Entry Guide*

Office Automation

Pr ime ' s Office Automation System i s c u r r e n t l y supported by four
documents:

• OAS V\ford Processing Guide*

Provides complete i n s t r u c t i o n s for the Word Processing module of
Pr ime 's Office Automation System.

• OAS Management Communications and Support Guide*

Provides i n s t r u c t i o n s for the Management Communications and
Support module of Pr ime 's Office Automation System. This module
comprises e l e c t r o n i c m a i l , correspondence management and
management support func t ions .

• OAS Advanced Text Management*

Provides complete i n s t r u c t i o n s for the Advanced Text Management
module of Pr ime 's Office Automation System. Advanced Text
Management enhances Wbrd Processing by provid ing automated
proofreading and hyphenat ion, and word-for-word t r a n s l a t i o n in
up to four languages i s inc luded.

• OAS System A d m i n i s t r a t o r ' s Guide*

Provides i n s t r u c t i o n s on management of Pr ime 's Office Automation
System. Such i tems a s c r e a t i o n of user I D ' s , g e n e r a t i o n and
purging of schedule g r i d s and p r i n t i n g hard c o p i e s of system
r e p o r t s a r e inc luded .

REV.

PDR4130 INTRODUCTION

PROGRAMMER'S COMPANIONS

Prime a l s o p rov ides a s e r i e s of handy pocke t - s i zed r e f e r ence summaries
on many of i t s p r o d u c t s . The following t i t l e s a r e c u r r e n t l y a v a i l a b l e :

• FORTRAN: The Programmer's Companion

• BASIC/VM: The Programmer's Companion-'

• Assembly Language: The Programmer's Companion

• PRIMPS Commands: The Programmer's Companion

• System Admin i s t r a t o r : The Programmer's Companion

• Vford P roces s ing : The Office Automation Companion

December 1980

8 *

it

VU-H'"

vji&ii ^•)-'^Kj,:

•'. .:*<:

— \

\

Partn
Writing and Runntog Programs

\

A #

rT
'JL J PTfcsMI-

•"•»?W>

':%••• g =i-

.Mi

PDR4130 BEFORE YOU GET STARTED

SECTION 2

BEFORE YOU GET STARTED

INTRODUCTION

Before you begin using your Prime computer, you'll need to know:

• A few facts about Prime's operating system, PRIMOS

• Bfow to define and organize your files and directories using
PRIMOS's file management system

• What the system prompts are

• What conventions Prime guides use when documenting commands

• HDW to use the terminal

• What meaning the special terminal keys have for the PRIMOS
operating system or for some of its subsystems

• What meaning some special characters have for PRIMOS or some of
its subsystems

• Fbw to define your own special characters or change the
characteristics of your terminal

This section explains all of them, in the above order.

INTRODUCING PRIMOS

All Prime computers, from the 350 up, use a common operating system
known as PRIMOS. Under PRIMOS, a Prime computer can support up to 63
simultaneous users. Each user is totally independent. Each one may
use any utility (such as an editor or compiler), and may write,
compile, load, and execute any program, in any language, without regard
to what other users are doing on the system.

Compatibility

Because a common operating system is used throughout the Prime
processor line, programs created on one Prime computer can be used on
most other Prime computers, without modification. There is complete
upward compatibility among all models, and complete downward
compatibility among the 750, 650, 550, and 450. Considerable downward
compatibility exists among other models as well, as long as system
constraints on program size and mode of code generated are observed.

December 1980

SECTION 2 PDR4130

Some Hardware Features

Prime's hardware supports t h i s mult i-user , in te rac t ive environment with

• Virtual memory, which allows users to run programs larger than
the physical memory of the machine. A program may be as la rge
as 32 megabytes on the Prime 450 and up (768 kilobytes on the
Prime 350).

• Segmentation of programs, allowing the separation of code and
da ta . This f a c i l i t a t e s the creation of pure code for shared or
recursive procedures.

• A ring protection system which provides hardware protect ion for
the operating system and user subsystems.

Except for segmentation of large programs, users have l i t t l e immediate
concern with these features . They are la rgely i nv i s i b l e , designed to
l e t users concentrate on the i r own goals without worrying about the
hardware.

USING THE FILE SYSTEM

File and Directory Structures

A PRIMOS file is an organized collection of information identified by a
filename. The file contents may represent a source program, an object
program, a run-time memory image, a set of data, a program listing,
text of an on-line document, or anything the user can define and
express in the available symbols.

Files are normally stored on the disks attached to the computer system.
No detailed knowledge of the physical location of a file is required
because the user, through PRIMOS commands, refers to files by name. On
some systems, files may also be stored on magnetic tape for backup or
for archiving.

PRIMOS maintains a separate User File Directory (UFD) for each user to
avoid conflicts that might arise in assignment of filenames. A Master
File Directory (MFD) is maintained by PRIMOS for each logical disk
connected to the system. (A logical disk, sometimes called a volume,
may occupy either a complete disk pack or a partition of a multi-head
disk pack. In either case, it serves as PRIMOS1s basic unit of
storage.) The MFD contains information about the location of each UFD
on the disk. In turn, each UFD contains information about the location
and content of each file or sub-UFD in that directory.

For a description of the PRIMOS file system and a description of the
ordering of information within files, refer to The PRIMOS Subroutines
Reference Guide.

REV. 0

PDR4130 BEFORE YOU GET STARTED

Pathnames

The PRIMOS file directory system is arranged as a tree. At the root
are the disk volumes (also called partitions, or logical disks). Each
disk volume has an MFD containing the names of several UFDs. Each UFD
may contain not only files, but subdirectories (sub-UFDs) , and they may
contain subdirectories as well. Directories may have subdirectories to
any reasonable level.

A pathname (also called a treename) is a name used to specify uniquely
any particular file or directory within PRIMOS. It consists of the
names of the disk volume, the UFD, a chain of subdirectories, and the
target file or directory. For example,

<F0REST>BEECH>BRANCH5>SQUIRREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the
sub-UFD BRANCH5. The file's name is SQUIRREL. Figure 2-1 illustrates
how pathnames show paths through a tree of directories and files.

Disk volume names, and the associated logical disk numbers, may be
found with the STATUS DISKS command, described later. A pathname can
be made with the logical disk number, instead of the disk volume name.
For example, if FOREST is mounted as logical disk 3,

<3>BEECH>BRANCH5>SQUIRREL

specifies the same file as the previous example.

Usually each UFD name is unique throughout all the logical disks. In
our example that would mean that there would be only one UFD named
BEECH in all the logical disks, 0 through 62. When that is the case,
the volume or logical disk name may be omitted, and PRIMOS will search
all the logical disks, starting from 0, until the UFD is found. For
example, if there is no UFD named BEECH on disks 0, 1, or 2, then

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last
form of pathname, in which the disk specifier is omitted, is called an
ordinary pathname because it is very frequently used.

Pathnames vs Filenames

Most commands accept a pathname to specify a file or'a directory. So
the terms "filename" and "pathname" may be used almost interchangeably.
A few commands, however, require a filename, not a pathname. It is
easy to tell a filename from a pathname. A pathname always contains a
">", while a filename or directory name never does.

December 1980

SECTION 2 PDR4130

PINE1

PINE2

BEECH

PINE3

ELM

(Not all the UFDs
are shown.)

This directory is the MFD of
the disk volume <FOREST>.

ORIOLE

This directory is the
UFD ELM.

This is the
fileTREEHOUSE.

r^
LEAF3

LEAF8

LEAF5

This is the
subdirectory
TWIG37.

This is the
file SQUIRREL.

This is the
subdirectory
TWIG14

This is the
file LEAF8.

This is the
file LEAF4.

Figure 2 - 1 . Examples of F i l e s and D i r e c t o r i e s
in PRIMOS Tree - s t ruc tu red F i l e System.

REV. 0

PDR4130 BEFORE YOU GET STARTED

Changing Directories

When the user logs in to a UFD, that UFD becomes the home directory.
The ATTACH command changes the home directory to any other directory to
which the user has access rights. (Thus, the home directory is the
directory to which the user is currently attached.) A home directory
may be an MFD, UFD, or sub-UFD.

Relative Pathnames

It is often more convenient to specify a file or directory pathname
relative to the home directory, rather than via a UFD. For example,
when the home directory is:

BEECH>BRANCH5

the commands

OK, SLIST BEECH>BRANCH5>1WIG9>LEAF3

and

OK, SLIST *>TWIG9>LEAF3

have the same meaning. The symbol "*" as the first directory in a
pathname means "home directory."

Current Disk

Occasionally it will be necessary to specify a UFD on the disk volume
you are currently using; that is, where your home directory is. For
example, when developing a new disk volume with UFD names identical to
those on another disk, it is necessary to specify which disk is to be
used, each time a pathname is given. The current disk is specified by:

<*>BEECH>BRANCH5

for example. Do not confuse "<*>", meaning current disk, with the "*"
alone, which means home directory.

Passwords

If any d i r e c t o r y has a password, the password becomes p a r t of the
d i r e c t o r y name or pathname. The password i s en te red a f t e r t h e name of
the d i r e c t o r y t o which i t be longs , separa ted by one blank s p a c e .
Apostrophes enc lose the e n t i r e pathname.

For example, i f t he d i r e c t o r y BEECH had a password, SECRET, a pathname
using i t might be

•BEECH SECRET>BRANCH5'

December 1980

SECTION 2 PDR4130

SYSTEM PROMPTS

The OK Prompt

The OK prompt indicates that the most recent command to PRIMOS has been
successfully executed, and that PRIMOS is ready to accept another
command from the user. The punctuation mark following the "OK"
indicates to the user whether he is interfacing with a single-user
level of PRIMOS. Tne prompt "OK:" indicates single-user PRIMOS (a
version of PRIMOS II); the prompt "OK," indicates multi-user PRIMOS.

PRIMOS supports type-ahead. The user need not wait for the "OK," after
one command before beginning to type the next command. Kbwever, since
each character echoes as the user types it, output from the previous
command may appear on the terminal jumbled with the command being typed
ahead. Type-ahead is limited to the size of the terminal input buffer.
Default is 192 characters.

PRIMOS II does not support type-ahead. The user must wait for "OK:"
before entering the next command.

The ERI Prompt

The ER! prompt indicates that PRIMOS was unable to execute the most
recent command, for one reason or another, and that PRIMOS is ready to
accept another command from the user. The ER! prompt usually is
preceded by one or more error messages indicating what PRIMOS thought
the trouble was.

Common errors include:

• Typographical errors

• emitting a password

• Being in the wrong directory

• Forgetting a parameter or argument

Changing the Prompt Message

Users can change the prompt message displayed at their terminals by
using the RDY command. See Section 15, Customizing Your Environment,
for details.

REV. 0

PDR4130 BEFORE YOU GET STARTED

CONVENTIONS

All of Pr ime ' s user g u i d e s and re fe rence gu ides use a s i n g l e s e t of
convent ions for documenting commands. In a l l of t h e s e g u i d e s , the
format of a command w i l l be d i sp layed in t he fol lowing manner:

(-op t ion \
-op t ion J [-opt ion]

The symbols and convent ions have the following meanings:

• WORDS-IN-UPPER-CASE

Capi ta l l e t t e r s i d e n t i f y command words or keywords. They a r e to be
en tered l i t e r a l l y . (Ei ther upper- or lowercase may be used.) If a
por t ion of an uppercase word i s unde r l i ned , the under l ined l e t t e r s
i n d i c a t e a system-def ined a b b r e v i a t i o n .

• Words- in- lower-case

Lowercase l e t t e r s i d e n t i f y arguments . The user s u b s t i t u t e s an
a p p r o p r i a t e numerical or t e x t v a l u e .

• Braces { }

Braces indicate a choice of arguments and/or keywords. At least one
choice must be selected.

• Brackets []

Brackets indicate that the keyword or argument enclosed is optional.

• Hyphen -

A hyphen identifies a command line option, as in: SPOOL -LIST.
Hyphens must be entered literally.

• Parentheses ()

When parentheses appear in a command format, they ?must be included
literally.

• Ellipsis ...

The preceding argument or op t ion may be r e p e a t e d .

December 1980

SECTION 2 PDR4130

Angle brackets < >

Used literally to separate the elements of a pathname. For example:
<FOREST>BEECH>BRANCH537>'IWIG43> LEAF4.

• option

The ward option indicates that one or more keywords or arguments can be
given, and that a list of options for the command follows.

• Spaces

Command words, arguments and options are separated in command lines by
one or more spaces. In order to contain a literal space, an argument
must be enclosed in single quotes. For example, a pathname may contain
a directory having a password:

»<FOREST>BEECH SECRET>BRANCH6'.

The quotes ensure.that the pathname is not interpreted as two items
separated by a space.

Conventions in Examples

In examples of terminal sessions, the user's input will be underlined,
The system's prompts or responses will not be underlined. For example

OK, ATTACH BEECH
OK,

TERMINAL KEYBOARD

Most of the user's interaction with PRIMOS takes place at a computer
terminal. Here we review the standard functioning of terminals and
present certain aspects unique to Prime.

Basic Layout

The exact layout of the terminal keyboard varies with the type of
terminal. Figure 2-2 shows a typical keyboard.

Besides the usual letter, number, and punctuation symbols, the terminal
keyboard also has a variety of special symbols and keys. The number
and letter keys are arranged in the same positions as on a standard
typewriter. The punctuation marks, however, may be located on
different keys.

REV. 0

PDR4130 BEFORE YOU GET STARTED

I '• | it | ' i | ' • | n | 't | " | '« | 11 | "» | '•• | "1 | " i | '•• | m | " t | o u m | i.mi |OCH»I>|ICHAH|

| gup |toi»i |»siMi|(»ia | ' » G I)«iiiON|MLOC«|toiuis| «sti | w s i ' | ™N-|sca^:|se»i: . | »»e | - | i | HOW I i | - | ue |

!SC

:0C«

!
0

'
5„n

C O M H O I

1

)
IV

S

2

1

(
S

Ft

0

'

6

'
-

c

;

•
G

*

8

u

«

B

9

'

'
<

0

0

'
«

(a

'

'
',

-

»

\

-

« i t u - i

swin

J COsTROi

Oil

1

(OP

BACK
SPACi

BR(««

!
ClEAS

7

•

'

t

5

1

0

9

6

3

CE

"
E
N
1
E
A

Figure 2-2. Typical Terminal Keyboard

Special keys fa l l into the following ca tegor ies :

• Terminal controls and switches

• Special keys

• Special characters

Terminal Controls and Switches

Terminal controls and switches affect the ways a specific terminal
performs. Etepending on what terminal model is available, these may be
on the front, side or bottom of the terminal, or beside the standard
keyboard.

The controls and switches of importance are:

ON/OFF: This is the power switch. Some terminals have an indicator
light which glows when power is on. On some terminal models, this
switch may be located at the rear or on the bottom.

LINE/LOCAL: This switch controls whether or not the terminal is
sending input to the computer. In LINE Mode, the terminal and the
computer are connected; in LOCAL Mode, the terminal acts like a
specialized typewriter. This switch is often labeled:
ON-LINE/OFF-LINE, REMOTE/LOCAL or LINE (with an indicator light which
is ON in LINE Mode, OFF in LOCAL Mode) .

December 1980

SECTION 2 PDR4130

UPPER-CASE/LOWER-CASE: Unlike the SHIFT key, the UPPER-CASE/LOWER-CASE
key affects the meanings of the letter keys only. UPPER-CASE causes
all letters to print in uppercase, no matter what the setting of the
shift key; LOWER-CASE allows selection between upper- and lower-case
in the standard manner (by using the shift key).

On some terminals, this switch is located on the bottom, instead of on
the keyboard. This key is often labeled: CASE, UPPER/LOWER or U/C
(for Upper-Case — when on). Terminals which produce upper-case
letters do not have this switch.

SPECIAL TERMINAL KEYS

• CONTROL

The key labeled CONTROL (or CTRL) changes the meaning of alphabetic
keys. Holding down CONTROL while pressing an alphabetic key (or some
special keys) generates a control character. Control characters do not
print. Some of them have special meanings to the computer. (See
CONTROL-P, CONTROL-Q and CONTROL-S, below.)

• RUBOUT

The key labeled RUBOUT has a special use in Prime's text processing
utility, RUNOFF. It is not generally meaningful to other standard
Prime software. On some terminals it is labeled DELETE or DEL.

• RETURN

The RETURN key ends a line. PRIMOS modifies the line according to any
erase (") or kill (?) characters, and either processes the line as a
PRIMOS command, or passes it to a utility such as the EDITOR. RETURN
is also called CR, CARRIAGE-RETURN, or NEW-LINE.

• BREAK X

ATTN
INTRPT

See CONTROL-P

SPECIAL CHARACTERS

• Caret (+)

Used in EDITOR to enter octal numbers and for literal insertion of
special characters. On some terminals and printers, prints as up-arrow
(+).

REV. 0 2 - 1 0

PDR4130 BEFORE YOU GET STARTED

• Backslash (\)

Default EDITOR t a b c h a r a c t e r .

• Double-quote (")

Default e rase c h a r a c t e r for PRIMOS and a l l subsys tems . Each
double-quote e r a s e s a c h a r a c t e r from the c u r r e n t l i n e . Erasure i s from
r i g h t (the most r e c e n t c h a r a c t e r) to l e f t . Two doub le -quo tes e r a s e two
c h a r a c t e r s , t h r e e e r a s e t h r e e , and so f o r t h . You cannot e r a s e beyond
the beginning of a l i n e . The PRIMOS command TERM (descr ibed l a t e r in
t h i s sec t ion) a l lows t he user to choose a d i f f e r e n t e r a s e c h a r a c t e r .

• Question mark (?)

Default k i l l c h a r a c t e r for PRIMOS and a l l subsystems. Each ques t ion
mark d e l e t e s a l l p rev ious c h a r a c t e r s on t he l i n e . The PRIMOS command
TERM al lows the user to choose a d i f f e r e n t k i l l c h a r a c t e r .

• CONTROL-P

QUIT immediately (interrupt/terminate) from execution of current
command and return to PRIMOS level. Echoes as QUIT. Used to escape
from undesired processes. Will leave used files open in certain
circumstances. Equivalent to hitting BREAK key.

• CONTROL-S

Halt output to terminal, for inspection. Program will run until output
buffer is full; then it will be suspended. Any commands other than
CONTROL-S or CONTROL-Q will be placed in the input buffer (until that
buffer is full). They will not execute until the suspended program has
terminated. Input will not be echoed at the terminal until either
CONTROL-P (QUIT) or CONTROL-Q (Continue) is given. This special
function is activated by the command TERM -XOFF.

• CONTROL-Q

Resume ou tpu t to t e rmina l following a CONTROL-S (i f TERM -XOFF i s in
e f f e c t) .

• UNDERSCORE (_)

On some d e v i c e s , p r i n t s a s a backarrow («-) .

- 11 December 1980

SECTION 2 PDR4130

• RESERVED CHARACTERS

The following characters are reserved by PRIMOS for special uses. They
may not be used in file names:

() { } [] < > ! % ' = + v @ ~ : I ; ? " \ ~ rubout

• SEMICOLON (;)

The semicolon is used as a command separator. Using the semicolon,
you can place multiple commands on a single line.

SETTING TERMINAL CHARACTERISTICS

Terminal characteristics may be set with the TERM command. These
characteristics remain in effect until you reset them or until you log
out. The commonly used TERM options areK listed below. Typing TERM
with no options returns the full list of TERM options available. The
format is:

TERM options

The common options are

Option

-ERASE character

-KILL character

-BREAK ION J
I OFF I

-XOFF

-NOXOFF

-DISPLAY

Function

Sets u s e r ' s choice of e r a s e
place of the " d e f a u l t .

c h a r a c t e r in

Sets u s e r ' s cho ice of
p lace of ? d e f a u l t .

k i l l c h a r a c t e r in

Enables or d i s a b l e s use of CONTROL-P a s a
BREAK c h a r a c t e r , to i n t e r r u p t a running
program or command. Defau l t , enabled a t
LOGIN, i s BREAK ON.

Enables X-OFB/X-ON f e a t u r e , which a l lows
use r s to suspend t e rmina l ou tpu t
temporar i ly and to resume i t a t the po in t
of suspension. Output i s h a l t e d by typing
CONTROL-S and i s resumed by typing
CONTROL-Q. Also s e t s t e rmina l t o f u l l
duplex (defau l t value) .

Disables X-OFF/X-ON f e a t u r e (d e f a u l t) .

Returns l i s t of c u r r e n t l y s e t TERM
c h a r a c t e r s . Also d i s p l a y s c u r r e n t Duplex,
Break and X-ON/X-OFF s t a t u s .

REV. 0 - 12

PDR4130 BEFORE YOU GET STARTED

Sending Messages from Your Terminal

You may communicate with users a t other terminals by using the
MESSAGE command.

The format of the command i s :

MESSAGE rusername "I [-NOW]
[-usernumberj

For complete d e t a i l s on the MESSAGE command see Section 15 of t h i s
guide or The PRIMOS Commands Reference Guide.

- 13 December 1980

PDR4130 ACCESSING PRIMOS

SECTION 3

ACCESSING PRIMOS

INTRODUCTION

In this section we introduce the essential PRIMOS commands so that you
can begin working on the system. We recommend that you keep a
Programmer's Companion handy as a summary of the commands explained in
this section plus other PRIMOS commands. In this user's guide we have
selected only those PRIMOS commands we know will be of use to most
programmers. Depending upon your application, there are many other
PRIMOS commands that may simplify your task or increase efficiency.

Using PRIMOS

PRIMOS recognizes more than 100 commands, some of which invoke
subsystems which themselves respond to subcommands or extensive
dialogs. ftowever, most users can do 99 percent of their program
development using about a dozen commands. This section introduces the
essential commands needed by all users. These commands allow you to:

• Gain admittance to the computer system (LOGIN)

• Change the home directory (ATTACH)

• Create new directories for work organization (CREATE)

• Secure directories against intrusion (PASSWD)

• Remove empty directories or unwanted files (DELETE)

• Examine the location of the home directory and its contents
(LISTF)

• Look at the availability and current usage of system resources -
space, users, etc. (AVAIL, STATUS, USERS)

• Rename files or directories (CNAME)

• Determine file size (SIZE)

• Examine files (SLIST)

• Allow controlled access to files (PROTEC)

• Complete a work session (LOGOUT)

Table 3-1 summarizes these commands.

December 1980

SECTION 3- PDR4130

Table 3 - 1 . Essen t i a l PRIMOS Conmands

COMMAND

ATTACH

CNAME

CREATE

DELETE

LISTF

LOGIN

LOGOUT

PASSWD

PROTEC

SIZE

SLIST

ACTS ON

FILES

X

X

X

X

X

DIRECTORIES

X

X

X

X

X

X

X

X

PROVIDES

INFORMATION

X

X

X

ACCESS

X

X

X

X

X

ACTION

X

X

X

REV. 0

PDR4130 ACCESSING PRIMOS

ACCESSING THE SYSTEM

In order to access or work in the system, the user must first follow a
procedure known as 'login'. 'Logging in1 identifies the user to the
system and establishes the initial contact between system and user (via
a terminal). Once logged in, the user has access to directories, files
and other system resources. The format of the LCGIN command is:

LOGIN ufd-name [password] [-ON nodename]

ufd-name The name of your login directory.

password Must be included if the directory has
a password.

-ON nodename Used for remote login across PRIMENET network.

For example:

LOGIN DOUROS NIX
DOUROS (21) LOGGED IN AT 10'33 112878

The number in pa ren these s i s the PRIMOS-assigned user number (a lso
c a l l e d ' j o b ' number). The t ime i s expressed in 24-hour format . The
d a t e i s expressed as mmddyy (Month Day Year) . The word NIX, in t h i s
example, i s the password on the log in d i r e c t o r y .

During l o g i n , a mis spe l l ed UFD w i l l cause t he message " t o t found.
(LOGIN)" t o be d i s p l a y e d . A misspe l l ed or i n c o r r e c t password w i l l
r e t u r n the message " I n s u f f i c i e n t access r i g h t s . (LOGIN)." If you g e t
e i t h e r of t he se messages , check t o be sure y o u ' r e logging i n to the
r i g h t d i r e c t o r y with t h e r i g h t password; then t r y logging in a g a i n .
If you s t i l l have t r o u b l e , ask your superv i sor for h e l p . If t he system
i t s e l f i s over loaded , a message such a s "maximum number of u s e r s
exceeded" may be d i s p l a y e d . In t h i s c a s e , log in aga in l a t e r , when
some o the r user may have logged o u t .

DIRECTORY OPERATIONS

Changing the Home Di rec to ry

After logging i n , t h e u s e r ' s home d i r e c t o r y i s s e t t o t he l o g i n UFD by
PRIMOS. The user can move (i . e . , a t t ach) to another d i r e c t o r y in the
PRIMOS t r e e s t r u c t u r e with t he ATTACH command. The format i s :

ATTACH new-d i rec to ry

new-d i rec to ry i s the pathname of the new home d i r e c t o r y .

December 1980

SECTION 3 PDR4130

Note

If any directory in the pathname has a password, the pathname
must be enclosed in single quotes, as in:

A 'BEECH SECRE'r^BRANCHS1

Recovering from Errors While Attaching: If an error message is
returned following an ATTACH command (for example, if a UFD is not
found), the user remains attached to the previous home directory.

However, if an incorrect password is given, then the user is not
attached to any UFD (has no home directory). If a command, such as
LISTF, is entered while in this state, the message: £

NO UFD ATTACHED

is returned. To remedy this condition, the user must ATTACH to a UFD
as in:

A BEECH

or to a subdirectory, using a complete or ordinary pathname (but not a
r e l a t ive pathname), as in:

A BEECH>BRANCH2

Creating New Directories

To organize tasks and work e f f ic ien t ly , i t i s often advantageous to
create new sub-UFDs. These sub-UFDs can be created within UFDs or
other sub-UFDs with the CREATE command. They can contain f i l e s and/or
other subdirector ies . The format i s :

CREATE pathname

pathname may be:

• The name of a new subdirectory to be created within the home
di rec tory .

• The pathname of a new subdirectory to be created within some
other d i rec tory .

For example:

ATTACH BEECH
CREATE BRANCH6

creates the subdirectory BRANCH6 in the directory BEECH.

REV. 0

PDR4130 ACCESSING PRIMOS

CREATE ELM>BRANCH1

c r e a t e s the s u b d i r e c t o r y BRANCH1 in t he UFD ELM.

Two f i l e s or sub-UFDs of the same name a r e no t permi t ted in a
d i r e c t o r y . If t h i s i s i n a d v e r t e n t l y a t t empted , PRIMOS w i l l r e t u r n the
message:

Already e x i s t s . DIRECTORY-NAME
ER!

Assigning Di rec to ry Passwords

D i r e c t o r i e s may be secured a g a i n s t unauthorized u s e r s by a s s ign ing
passwords with the PASSWD command. There a r e two l e v e l s of passwords:
owner and non-owner. If you g ive the owner password in an ATTACH
command, you have owner s t a t u s ; i f you g ive t he non-owner password in
an ATTACH command, you have non-owner s t a t u s . F i l e s can be g iven
d i f f e r e n t access r i g h t s for owners and non-owners •'with the PROTEC
command (see Con t ro l l ing F i l e Access) .

The PASSWD command r e p l a c e s any e x i s t i n g password(s) on t h e working
d i r e c t o r y with one or two new passwords, or a s s i g n s passwords to t h i s
d i r e c t o r y i f t h e r e a r e none . The format i s :

PASSWD owner-password [non-owner-password]

The owner-password i s spec i f i ed f i r s t ; the non-owner-password, i f
g iven , f o l l ows . If a non-owner password i s not s p e c i f i e d , t h e d e f a u l t
i s n u l l ; t h e n , any password (except t he owner password) or none a l lows
access to t h i s d i r e c t o r y a s a non-owner. For example:

OK, A DOUROS NIX
OK, PASSWD US THEM

The old password, NIX, i s rep laced by the owner password US, and the
non-owner password THEM. Passwords may con ta in almost any c h a r a c t e r s ;
but they may no t begin with a d i g i t (0 - 9) .

Examining Contents of a Di rec to ry

After logging in or a t t a c h i n g to a d i r e c t o r y , t he user can examine the
c o n t e n t s of t h i s d i r e c t o r y with the LISTF command which g e n e r a t e s a
l i s t of t he f i l e s and s u b d i r e c t o r i e s in the home d i r e c t o r y . The format
i s :

LISTF

December 1980

SECTION 3 PDR4130

For example, the working directory is called LAURA. The following list
will be generated when LISTF is entered at the terminal:

OK, LISTF

UFD=<MISCEL>TEKMAN>LAURA 6 OWNER

$QUERY BOILER EX LETTER QUERY OLISTF BASICPROGS
OUTLINE $OUTLINE MQL .$MQL $LETTER MQL.LETTER FTN10
EXAMPLES FUTIL.10 $FUTIL.10

OK,

The number following the UFD-name is the logical device number, in this
case, 6. The words OWNER or NONOWN follow this number, indicating the
user status in this directory. (See Assigning Directory Passwords) .

If no files are contained in a directory, .NULL, is printed instead of
a list of files.

Deleting Directories

When directories or subdirectories are no longer needed, they may be
removed from the system to provide more room for current work. If the
directories are empty, they may be removed by the DELETE command. The
format is:

DELETE pathname

If an attempt is made to delete directories containing files or
subdirectories, PRIMOS prints the message:

The directory is not empty. (DIRECTORY-NAME)

In this case, the user must do one of two things:

• Use the LISTF command to find what files (or subdirectories) are
in the directory. Delete each entry with the command "DELETE
filename." Then delete the empty directory.

• Use FUTIL's TREDEL command (explained in Section 10) to delete
files and directory simultaneously.

SYSTEM INFORMATION

Table 3-2 summarizes useful information you may need about the system
and how to obtain it.

REV. 0

PDR4130 ACCESSING PRIMOS

Table 3-2 . Useful System Information

Item

Number of u s e r s

User l og in UFD

User number

User l i n e number

User ' s phys ica l
devices

Open f i l e u n i t s

Magnetic tape u n i t s

Disks in o p e r a t i o n

Assigned p e r i p h e r a l
dev ices

User p r i o r i t i e s

Other user numbers

Your phantom
user number

Network information

Current nodename

Records a v a i l a b l e

System time
and d a t e

Use

Indicates system
resource usage and
expected performance.

Identifies user who
spooled text file
(printed on banner).

Avoids conflict when
using files.

Lists assigned units,
with their logical
aliases and users

Tells what devices
are available.

For logging out your
phantoms.

Tells if network is
available.

Tells how much room
is available for file
building, sorting, etc

Performs time logging
in audit files.

PRIMOS commands

STATUS USERS (user list)
USERS (number of users)

STATUS, STATUS UNITS,
STATUS ME

STATUS ME, STATUS USERS

STATUS ME, STATUS USERS

STATUS ME

STATUS, STATUS UNITS

STATUS DEVICE

STATUS, STATUS DISKS

STATUS USERS

STATUS USERS

STATUS USERS

STATUS USERS, STATUS ME

STATUS, STATUS NET

STATUS NET, STATUS UNITS

AVAIL

DATE

December 1980

SECTION 3 PDR4130

Table 3-2. (Continued)

Item Use PRIMOS commands

Computer time used Measures program
since login execution time.

Spool queue
contents

Tells if job has been
printed.

TIME

SPOOL -LIST

Names and status of Tells if local printers PROP -STATUS
printers

Environment for a
printer

Batch users

Your a c t i v e Batch
jobs

Batch queue s t a t u s

a re func t ion ing .

Gives parameters for
p r i n t e r ' s ope ra t i ons

I d e n t i f i e s executing
j o b s , number of jobs
per queue

Gives job i d , s t a t u s ;
g i v e s job parameters

L i s t s Batch queues and
t e l l s v^iich ones are
a v a i l a b l e for use

PROP pr in te r -name
-DISPLAY

BATCH -DISPLAY

JOB -STATUS
JOB -DISPLAY

BATGEN -STATUS

Batch queue
con f igu ra t i ons

Shows environment
of Batch system

BATGEN -DISPLAY

Note

Information given by any STATUS command
STATUS ALL command.

is also given by the

REV. 0

PDR4130 ACCESSING PRIMOS

FILE OPERATIONS

Creating and Modifying Files

Text files are created and modified using the text editor (ED). They
are printed on the line printer using the SPOOL command. Both these
processes are discussed in Section 4. Files may be transferred from
other systems not connected via PRIMENET using magnetic tape (MAGNET
command), paper tape (ED command), or punched cards (CRSER command).
These commands are described in Section 11.

Changing File Names

It is often convenient or necessary to change the name of a file or a
directory. This is done with the CNAME command. The format is:

CNAME old-name new-name

old-name is the pathname of the file to be renamed, and new-name is the
new filename. For example:

en tools>more_test oldtest

The file named MORE_TEST in the UFD TOOLS is changed to OLDTEST. Since
no disk, was specified, all MFDs (starting with logical disk 0) are
searched for the UFD TOOLS.

If new-name already exists, PRIMOS will display the message:

Already exists. OLDTEST
ERJ

An incorrect old-name prompts the message:

Not found. MORETEST
ER!

Determining File Size

The size (in decimal records) of a file is obtained with the SIZE
command. This command returns the number of records and words in the
file specified by the given pathname. The number of records in a file
is defined as the total number of data words divided by 440. However,
a zero-word length file always contains one record. The format is:

SIZE pathname

December 1980

SECTION 3 PDR4130

For example:

OK, SIZE DATA.FILE.1
205 RECORDS IN FILE (89762 words)

Examining F i l e Contents

Contents of a program or any t e x t f i l e can be examined a t t he t e rmina l
with the SLIST command. The format i s :

SLIST pathname

The f i l e spec i f i ed by the given pathname i s d i sp layed a t t h e t e r m i n a l .
I t i s p o s s i b l e to suspend the terminal d i s p l a y a s i t i s p r i n t i n g . See
the d i s c u s s i o n on TERM, in Section 2.

Delet ing F i l e s

When f i l e s or programs a r e no longer needed they may be removed from
the system to provide more room for o the r u s e s . The DELETE command
d e l e t e s f i l e s from the working d i r e c t o r y . The format i s :

DELETE pathname

SEG r u n f i l e s cannot be de le t ed by t h i s command. They must be de l e t ed
by SEG's own d e l e t e command (explained in Sect ion 6) or by FUTIL's
TREDEL command (explained in Section 10) .

Cont ro l l ing F i l e Access

Assigning passwords to d i r e c t o r i e s al lows u se r s working in a d i r e c t o r y
to be c l a s s i f i e d a s owners or non-owners, depending upon which password
they use with the ATTACH command. Control led acces s can be e s t a b l i s h e d
for any f i l e using the PROTEC command. This command s e t s the
p r o t e c t i o n keys for u se r s with owner and non-owner s t a t u s in the
d i r e c t o r y . (See Assigning Direc tory Passwords above.) The format i s :

PROTEC pathname [owner-r ights] [non-owner-r ights]

pathname The name of the f i l e to be p r o t e c t e d .

owner - r igh t s A key specifying owner ' s access r i g h t s to f i l e
(o r i g ina l value = 7) .

non-owner- r ights A key specifying the non-owner 's access r i g h t s
(o r ig ina l value = 0) .

REV. 0 3 - 1 0

PDR4130 ACCESSING PRIMOS

The va lues and meanings of the access keys a r e :

Key Rights

0
1
2
3
4
5
6
7

For example:

No access of any kind alio1

Read only
Write only
Read and Write
Delete and truncate
Delete, truncate and read
Delete, truncate and write
All access

PROTEC <OLD>MYUFD>SECRET 7 1

In t h i s example, p r o t e c t i o n r i g h t s a r e s e t on the f i l e SECRET in t he
UFD MYUFD so t h a t a l l r i g h t s a r e given to the owner and o n l y read
r i g h t s a r e g iven to the non-owner.

Note

The d e f a u l t p r o t e c t i o n keys a s soc i a t ed with any newly c r e a t e d
f i l e or UFD a r e : 7 0. The owner i s given ALL r i g h t s and the
non-owner i s g iven none. Default v a l u e s for the PROTEC
command, however, a r e : 0 0. Thus, t he command PROTEC MYFILE
den ies a l l r i g h t s to owner and non-owner a l i k e .

COMPLETING A WORK SESSION

When f in i shed with a s e s s i o n a t the t e r m i n a l , g ive the LOGOUT command.
The format i s :

LOGOUT

PRIMOS acknowledges the command with the following message:

UFD-name (user-number) LOGGED OUT AT (time) (date)
TIME USED = t e r m i n a l - t i m e CPU-time I/O-time

user-number The number ass igned a t LOGIN.

t e rmina l - t ime The amount of elapsed c lock t ime between LOGIN and
LOGOUT in hours and minu tes .

CPU-time Centra l Processing Unit t ime consumed in minutes and
seconds .

I/O-time The amount of i n p u t / o u t p u t time used in minutes and
seconds .

- 11 December 1980

SECTION 3 PDR4130

I t i s a good pract ice to log out af ter every sess ion. This c loses a l l
f i l e s and re leases the PRIMOS process to another user . However, if you
forget to log out , there i s no serious harm done. The system wil l
automatically log out an unused terminal af ter a time delay. This
delay i s se t by the System Administrator (the defaul t i s 1000 minutes
but most System Administrators will lower t h i s va lue) .

REV. 0 3 - 1 2

PDR4130 CREATING AND LISTING FILES

SECTION 4

CREATING SOURCE FILES

ENTERING AND MODIFYING PROGRAMS — THE EDITOR

Programs are normally entered into the computer using Prime's Text
EDITOR (ED). This EDITOR is a line-oriented text processor. That is,
it enters and modifies text on a line-by-line basis, keeping track of
its current location by a line pointer that is always located at the
last line processed (whether the processing action is printing,
locating, moving pointer, etc.). The EDITOR operates in two modes,
INPUT and EDIT.

Using the EDITOR

When creating a new file, the EDITOR is invoked by

ED

which places the EDITOR in the INPUT mode. When modifying an existing
file, the EDITOR is invoked by

ED filename

which places the EDITOR in the EDIT mode.

A RETURN with no preceding characters on that line switches the EDITOR
from one mode to another.

Input Mode

The INPUT mode is used when entering text information into a file
(e.g., creating a program). The word INPUT is displayed at the user's
terminal to indicate that the EDITOR has entered that mode. "The RETURN
key terminates the current line and prepares the EDITOR to receive a
new line. Tabulation is done with the backslash (\) character. Each
backslash represents the first, second, etc., tab setting; the default
tabs are at columns 6, 15, and 30. These settings may be overridden
and up to 8 tab settings may be specified by the user with the TABSET
command (described in Appendix E). A RETURN with no ,text preceding it
puts the EDITOR into EDIT mode.

Edit Mode

The EDIT mode is used when the contents of the file are to be modified.
More than 50 commands are available, although users will find that a
small subset of these will suffice for most purposes. The commands in
this subset are listed and described in detail later in this section.
Bbr a complete list of commands, see Appendix E.

4 - 1 December 1980

SECTION 4 PDR4130

In EDIT mode, the EDITOR maintains an internal line pointer at the
current line (the last line processed) . Commands such as TOP, BOTTOM,
FIND, and LOCATE, move this pointer. WHERE prints out the current line
number; POINT moves the pointer to a specified line number. The MODE
NUMBER command causes the line number to be printed out whenever a line
of text is printed. All commands for location and modification begin
processing with the current line.

A RETURN without any preceding characters puts the EDITOR into the
INPUT mode.

Special Characters

In either mode, a single character can -be erased with the erase
character (default is ") . For each " typed, a character is erased
(from right to left). The entire current line may be deleted by typing
the kill character (default is ?). A line followed by a ? is null,
and a RETURN at that point will switch the EDITOR into the other mode.

In input mode, the semicolon (;) is equivalent to a CR (ends a line of
input) . In edit mode, semicolons in a character string are treated as
a printing character; semicolons within commands separate multiple
commands entered on the same line. A special character may be entered
literally in either mode by preceding it with an escape character (~) .
Special characters may be changed using the TERM command (explained in
Section 2) .

Saving Files

Orderly termination of an EDITOR session is done from EDIT mode. The
command:

FILE filename

writes the current version of the edited file to the disk under the
name filename. The specified file will be created if it did not
previously exist or overwritten if it does exist. If an existing file
is being modified, the command

FILE

writes the edited version to the disk with the old filename. After
execution of the filing command, control is returned to PRIMOS.

A file may also be saved without leaving the EDITOR. The command:

SAVE filename

REV. 0

PDR4130 CREATING AND LISTING FILES

saves a file in its current state under filename. The filename may be
the original name of the file or a new name. You may then resume
editing your current file. If filename is not specified, the current
filename is used. The name of the file is then printed on the terminal
screen.

Useful Techniques

The following will aid the user in adapting to Prime's EDITOR:

Tab Settings: When entering source code, much time can be saved using
the TABSET command. In INPUT mode, each \ character is interpreted as
one tab setting; the default values are columns 6, 15, and 30. Tabs
may be set to whatever values each programmer finds useful. Setting a
tab near column 45 makes entry of in-line comments simple; the use of
such comments in programs is strongly advised.

Moving Lines of Code: Any number of lines can be moved from one
location to another using the DUNLOAD command. DUNLOAD deletes these
lines as it writes them into an auxiliary file. A LOAD command loads
the new file at the desired point. Any number of lines can be copied
from one location in a program to another using the UNLOAD command.
UNLOAD does not delete the lines as it writes them into an auxiliary
file. A LOAD command loads the copy from the new file at the desired
point.

Overlaying Comments After Code is Written: Comments may be easily
added to an existing source program with the OVERLAY command in
conjunction with the TABSET command.

Finding a Line by Label or Statement Number: The FIND command may be
used to locate a statement number in a FORTRAN program or a label in a
COBOL or PL/I program.

Modifying a Line Without Changing Character Fbsitions: The MODIFY
command is used when a line must be modified but the absolute column
alignment must remain the same.

Column Display: Entering source code and other data is facilitated by
the column display feature. A banner of column numbers is displayed on
the terminal for an alignment guide. The MODE COLUMN command, given in
Edit mode, causes this display to be printed each time Input mode is
entered during an EDITOR session.

Other Hints: When entering FORTRAN programs, it is often helpful to use
the TABSET command to reset tabs to columns 7 and 45.

When entering PL/I programs, use the SYMBOL command to change the
SEMICO character (which normally tells the EDITOR of the end of a line
or command) from a semicolon to something else. For example:

SYMBOL SEMICO {

December 1980

SECTION 4 PDR4130

In t h i s e x a m p l e , t h e b r a c e becomes t h e EDITOR'S l i n e - e n d i n g s y m b o l , and
t h e s e m i c o l o n i s f r e e d fo r i t s PL / I f u n c t i o n s .

To e n t e r a s i n g l e s e m i c o l o n (or o t h e r s p e c i a l c h a r a c t e r) , p r e c e d e i t
w i t h an u p - a r r o w .

To e n t e r u p - a r r o w s l i t e r a l l y , t y p e two u p - a r r o w s . The r e s u l t d i s p l a y s
a s two u p - a r r o w s on t h e t e r m i n a l , b u t p r i n t s a s one u p - a r r o w on t h e
p r i n t e r and i s i n t e r p r e t e d a s a s i n g l e u p - a r r o w b y c o m p i l e r s .

EDITOR1 S ERROR MESSAGES

In e d i t mode, i f you g i v e EDITOR a command t h a t i t c a n n o t u n d e r s t a n d ,
you w i l l r e c e i v e one of t h e f o l l o w i n g e r r o r m e s s a g e s :

• BAD a b b r e v i a t o r - - T h i s means you d i d n o t u s e t h e p r o p e r f o rma t
f o r t h e command.

• ? — Your i n p u t c o u l d n o t be i n t e r p r e t e d a s a n y o f t h e EDITOR
commands. T h i s i s o f t e n a r e s u l t o f t h i n k i n g t h a t you a r e i n
i n p u t mode when you ^.re s t i l l i n e d i t mode.

BASIC EDITOR COMMANDS

You s h o u l d be a b l e t o do most o f your t e x t - e d i t i n g u s i n g t h e f o l l o w i n g
s e l e c t i o n o f t h e EDITOR commands:

The PRINT Command

L o c a t i o n Commands
TOP
BOTTOM
NEXT
POINT

S t r i n g - F i n d i n g Commands
LOCATE
FIND
NFIND
FIND(n)
NFIND(n)

Tex t -Chang ing Commands
APPEND
CHANGE
DELETE
INSERT
IB
RETYPE
OOPS

REV. 0

PDR4130 CREATING AND LISTING FILES

DUNLQAD
LOAD
UNLOAD

Ending and Saving an EDITOR Session Commands
QUIT
FILE
SAVE

These commands a r e d i scussed in d e t a i l in the fol lowing few p a g e s . All
of the EDITOR commands a r e l i s t e d in Appendix E of t h i s gu ide and in
Tne New Use r ' s Guide to EDITOR and RUNOFF.

Note

The string argument in the commands in this section are any
series of ASCII characters including leading, trailing, or
embedded blanks. A semicolon terminates the command unless it
appears within delimiters (as in the CHANGE, MODIFY or GMODIFY
commands) or is preceded by the escape character (~) .

Valid command abbreviations are underlined.

Sample File

The following FORTRAN program is used in all the examples in this
section.

C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50) , LSTORE (50)
DO 100 I = 1, 10

LNUMB (I) = I
WRITE (1 , 200) LNUMB (I)

200 FORMAT (10X, 15)
100 CONTINUE

CALL EXIT
END

The PRINT Command

The PRINT command p r i n t s n l i n e s of your f i l e , inc lud ing the c u r r e n t
l i n e , and makes the l a s t l i n e PRINTed the new c u r r e n t l i n e . The format
of the PRINT command i s :

PRINT [n]

n is the number of lines you want printed. If n is -1, 0, or omitted,
the default value is 1. If n is negative, EDITOR moves the pointer
back n lines from the current line, and then prints one line, which is
the new current line. For example:

4 - 5 December 1980

SECTION 4 PDR4130

PRINT 5
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50)
PRINT 2

DIMENSION LNUMB (50)
DO 100 I = 1, 10

PRINT -2
DIMENSION LNUMB (50)

The space between PRINT and n is optional. A PRINT immediately after
the following commands yields .NULL.: TOP, BOTTOM, DELETE, DUNLOAD,
LOAD.

Location Commands

Location commands move the pointer to a specific line. EDITOR'S
specific location commands are TOP, BOTTOM, NEXT, and POINT.

The TOP Command: The TOP command moves the pointer to the null line at
the top of the file, just above the first line of text. The format of
the TOP command is:

TOP

Example:

TOP
PRINT
.NULL.
PRINT 2
.NULL.
C This program generates the numbers 1 to 10

The BOTTOM Command: The BOTTOM command moves the pointer to the bottom
below the last line of text. The format of the of the file,

BOTTOM command

BOTTOM

Example:

BOTTOM
PRINT
.NULL.
BOTTOM
PRINT -3

CALL

just
is:

EXIT

REV. 0

PDR4130 CREATING AND LISTING FILES

PRINT 5
CALL EXIT
END

BOTTOM

The NEXT Command: The NEXT command moves the pointer n lines and prints
the new current line. Positive values of n move the pointer down
towards the bottom of the file; negative values move the pointer up
towards the top. The format of the NEXT command is:

NEXT [n]

If n is 0 or unspecified, the default value of 1 is used. If n is
great enough to move the pointer beyond the top or bottom null line,
the pointer stops at the null line, and either TOP or BOTTOM is
printed. For example:

TOP
NEXT
C This program g e n e r a t e s the numbers 1 to 10
NEXT 5

LNUMB (I) = I
BOTTOM
NEXT
BOTTOM

The POINT Command: The POINT command positions the pointer at line n.
The line numbers are not actually part of your file; EDITOR generates
them for its own reference. The format of the POINT command is:

POINT n

The POINT command is equivalent to the sequence TOP, NEXT n. The value
of n must be greater than 0. POINT 0 will give you an error message.
POINT 1 is equivalent to TOP, NEXT. If n is greater than the number of
lines in the file, the pointer will be left at the bottom. For
example:

POINT 5
DO 100 I = 1, 10

POINT 7
WRITE (1, 200) LNUMB (I)

POINT -4
BAD POINT
POINT 2
C and prints the numbers on the terminal screen.

String-Finding Commands

The LOCATE and FIND commands reposition the pointer to the first line
below the current line containing the specified string. The NFIND
command repositions the pointer to the first line below the current
line which does not begin with the specified string.

4 - 7 December 1980

SECTION 4 PDR4130

These commands distinguish between uppercase and lowercase letters in a
specified string. If you are unable to find old lines in your file,
but can find newly inserted ones, and your current display is set for
all CAPS, the CASE control on your terminal may be in the wrong
position.

The LOCATE Command: The LOCATE command locates the first line below the
current line which contains string anywhere in that line and prints the
line on your terminal. The format of the LOCATE command is:

LOCATE string

If no line containing string is found below the current line, BOTTOM
will be printed and the pointer left at the end of the file. The
string cannot contain commas.

Example:

PRINT 5
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50)
TOP
LOCATE DIMENSION

DIMENSION LNUMB (50)

The FIND Command: The FIND command is a specialized version of the
LOCATE command. It searches for a string and prints the string when
found. The string, however, must begin in column one in order for FIND
to locate the string. The format of the FIND command is:

FIND string

If no line beginning with string is found, the pointer stops at the end
of the file, and the word BOTTOM is printed. The string cannot contain
commas.

Example:

FIND C
C This program generates the numbers 1 to 10
FIND 100
100 CONTINUE

The NFIND Command: The NFIND command moves the pointer to the first
line below the current line which does not begin with string. The
format of the NFIND command is:

NFIND string

REV. 0

PDR4130 CREATING AND LISTING FILES

Example:

PRINT 6
.NULL.
C This program g e n e r a t e s t he numbers 1 t o 10
C and p r i n t s t he numbers on the te rminal s c r een .
C

DIMENSION LNUMB (50)
DO 100 I = 1, 10

TOP
NFIND C

DIMENSION LNUMB (50)

Searching on a Specific Column: You can also find a string starting in
a column other than column 1 by specifying the number of the column
within parentheses directly after the command word.

FIND(n) string

The parentheses () around the column number are required. There cannot
be any spaces between FIND and (n). For example:

PRINT 12
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50)
•DO 100 I = 1, 10

LNUMB (I) = I
WRITE (1, 200) LNUMB (I)

200 FORMAT (10X, 15)
100 CONTINUE

CALL EXIT
END

TOP
FIND(7) D

DIMENSION LNUMB (50)
FIND (2) 0
200 FORMAT (10X, 15)

Like FIND, you can NFIND beginning on a column other than column 1
using the format:

NFIND(n) string

Example:

NFIND(l) C
DIMENSION LNUMB (50)

FIND(2) 0
200 FORMAT (10X, 15)
NFIND (2) 0

CALL EXIT

December 1980

SECTION 4 PDR4130

Text-Changing Commands

The APPEND, CHANGE, DELETE, INSERT, IB, RETYPE, OOPS, DUNLOAD, LOAD,
and UNLOAD commands alter the text on one or several lines.

The APPEND Command; The APPEND command attaches a specified string to
the end of the current line. The format of the APPEND command is:

APPEND string

Remember: One blank separates the command word APPEND (or
abbreviation) from the string you wish to append. All further blanks
are treated as part of the string.

Example:

DIMENSION LNUMB (50)
APPEND , LSTORE (50)

DIMENSION LNUMB (50) , LSTORE (50)

The CHANGE Command: The CHANGE command r e p l a c e s one s t r i n g in the
c u r r e n t l i n e with another s t r i n g . The f i r s t c h a r a c t e r a f t e r the
command word CHANGE (or abbrev ia t ion) i s used a s t he d e l i m i t e r . The
format of the CHANGE command i s :

CHANGE/string-l /str ing-2/[G] [n]

Example:

DIMENSION LNUMB (50) , LSTORE (50)
CHANGE/DIMENS ION/COMMON/

COMMON LNUMB (50) , LSTORE (50)

Use a delimiter which does not occur in the text you are changing.
Slash is a common delimiter, but if your text to be changed contains
slashes, use a different character, as in this example:

DIMENSION LNUMB (50)/ LSTORE (50)
CHANGE;/;,

DIMENSION LNUMB (50), LSTORE (50)

If the letter G (for General) is specified, CHANGE,will change every
occurrence of string-1 on a line. If you do not specify G, only the
first incidence of string-1 will be changed.

If the value of n is either 0 or 1, EDITOR only makes changes on the
current line. (If n is either 0 or unspecified, the default value of 1
is used.) If a value other than 0 or 1 is specified, EDITOR will
inspect and make changes on n lines starting at the current line, and
leave the pointer positioned at the nth line. If there are fewer than
n lines in the file the message BOTTOM is printed. EDITOR prints out
all changed lines, plus the last line examined.

REV. 0 4 - 1 0

PDR4130 CREATING AND LISTING FILES

Note

1. Remember to issue the TOP command before making changes on the
file as a whole.

2. If you end the command with a RETURN, you can omit the closing
delimiter.

3. You can specify the semicolon (;) as a text character within
the delimiters — e.g., if you used "@" every place in your
file where you wanted to use ";" then the command sequence
TOP, CHANGE/@/;/G9999 would change all the @'s to ;'s. (Make
sure n is greater than the number of lines in your file.)

4. You can use CHANGE to insert characters at the beginning of a
line with the sequence:

CHANGE//string/

Example:

LNUMB (50) , LSTORE (50)
CHANGE// DIMENSION /

DIMENSION LNUMB (50), LSTORE (50)

The DELETE Command: The DELETE command deletes n lines, including the
current line, and leaves the pointer at the null line where the last
deleted line was. The null line is maintained, in case you wish to
insert a new line, until a new command moves the pointer away. The
format of the DELETE command is:

DELETE [n]

If n is not specified, the default value of 1 is used. n may be
positive or negative, indicating deletion of the current line plus n-1
lines below or above the current line. Since n always indicates the
current line, the commands d, dl and d-1 are all equivalent.

Example:

TOP
PRINT 5
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50) , LSTORE (50)
NEXT -2
C and prints the numbers on the terminal screen.
DELETE
PRINT
.NULL.

- 11 December 1980

SECTION 4 PDR4130

TOP
PRINT 4
.NULL.
C This program generates the numbers 1 to 10
C

DIMENSION LNUMB (50) , LSTORE (50)

The INSERT Command: The INSERT command i n s e r t s a s p e c i f i e d new l i n e
following the c u r r e n t l i n e ; the inse r t ed l i n e then becomes the c u r r e n t
l i n e . The format of the INSERT command i s :

INSERT newline

Example:

DIMENSION LNUMB (50), LSTORE (50)
DO 100 I = 1, 10

NEXT -1
DIMENSION LNUMB (50), LSTORE (50)

INSERT COMMON LSTART (50)
PRINT 2

COMMON LSTART (50)
DO 100 I = 1, 10

The IB Command: The IB command inserts a new line ahead of the current
line; the inserted line then becomes the current line. The format of
the IB command is:

IB newline

Example:

PRINT 5
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (5 0) , LSTORE (50)
IB COMMON LSTART (50)
NEXT - 3
C This program generates the numbers 1 to 10
PRINT 5
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

COMMON LSTART (50)
DIMENSION LNUMB (50) , LSTORE (50)

The RETYPE Command: The RETYPE command deletes the current line and
replaces it with the text specified in string. The format of the
RETYPE command is:

RETYPE string

REV. 0 4 - 1 2

PDR4130 CREATING AND LISTING FILES

Remember: The first space after RETYPE separates the command word from
the parameter; all further spaces are part of string.

Example:

C Thsi porgarm gennra t s e h t e numbers 1 too 1999
C and p r i n t s the numbers on t he te rmina l s c r e e n .
C
NEXT -2
C Thsi porgarm gennratse hte mumbers 1 too 1999
RETYPE C This program generates the numbers 1 to 10
PRINT
C This program g e n e r a t e s the numbers 1 to 10
PRINT 3
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

The string is terminated by either a semicolon (;) or a RETURN.

RETYPE followed immediately by a space and a RETURN erases the -urrent
line and replaces it with a blank line; RETYPE followed by a RETURN
yields: BAD RETYPE.

Example:

. C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C
NEXT -1
C and prints the numbers on the terminal screen.
RETYPE
BAD RETYPE
RETYPE
PRINT

NEXT - 1
C This program g e n e r a t e s t he numbers 1 to 10
PRINT 3
C This program generates the numbers 1 to 10

C

Tne OOPS Command: The OOPS command undoes the last line changed and
reinstates it to its condition before the modification. This command
does not work for changes to multiple lines at a time. The format of
the OOPS command is:

OOPS

- 13 December 1980

SECTION 4 PDR4130

Example:

DIMENSION LNUMB (50), LSTORE (50)
CHANGE/DIMENSION/COMMON

COMMON LNUMB (50), LSTORE (50)
OOPS

DIMENSION LNUMB (50), LSTORE (50)

The DUNLOAD Command: The DUNLOAD command creates a new file with
indicated filename, copies n lines from the EDITOR work file, beginning
with the current line, into this new file, and then deletes these n
lines from the work file. The format of the DUNLOAD command is:

DUNLOAD filename [n]

If filename is not specified, you will get the error message: BAD
DUNLOA. However, be careful not to specify a filename currently in use
unless you want the old file wiped out.

If n is not specified, the default value of 1 is used and one line is
DUNLOADed. DUNLOAD leaves the pointer positioned at a null line where
the deleted lines used to be; this null line disappears as soon as the
pointer is moved.

The DUNLOAD command is useful for moving lines of text to different
places; DUNLOAD can also be used instead of DELETE if you want to make
sure you don't accidentally delete large blocks of text.

Example:

TOP
PRINT 12
.NULL.

DIMENSION LNUMB (50), LSTORE (50)
DO 100 I = 1, 10

LNUMB (I) = I
WRITE (1, 200) LNUMB (I)

C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C
200 FORMAT (10X, 15)
100 CONTINUE

CALL EXIT
END

NEXT -6
C This program generates the numbers 1 to 10
DUNLOAD COMMENTS 3
TOP
PRINT
.NULL.

12

DIMENSION LNUMB
DO 100 I

LNUMB
WRITE

= 1 ,
(I)
(1 ,

(50)
10

= I
200)

, LSTORE

LNUMB (I)

(50)

REV. 0 4 - 1 4

PDR4130 CREATING AND LISTING FILES

200 FORMAT (10X, 15)
100 CONTINUE

CALL EXIT
END

BOTTOM

The LOAD Command: The LOAD command c o p i e s t h e c o n t e n t s o f a f i l e
(specif ied by i t s filename) in to the EDITOR work f i l e j u s t below the
c u r r e n t l i n e . The po in t e r w i l l then be j u s t below the end of the
LOAEed t e x t , pos i t i oned a t a n u l l l i n e . The format of the LOAD command
i s :

LOAD fi lename

LOAD does no t a f f e c t t he c o n t e n t s of the o r i g i n a l f i l e f i lename in any
way; i t s imply cop ie s the c o n t e n t s of fi lename in to the work f i l e .

Example:

TOP
PRINT 3
.NULL.

DIMENSION LNUMB (50) , LSTORE (50)
DO 100 I = 1, 10

TOP
LOAD COMMENTS
EDIT
TOP
PRINT 6
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50), LSTORE (50)
DO 100 I - 1, 10

Note

LOADed text will not go in your permanent files in your UFD
unless you FILE at the end of the EDITing session. (The FILE
command is discussed in detail later in this section.)

The UNLOAD Command: The UNLOAD command copies n lines beginning at the
current line from the file being EDITed into a new file named filename.
The format of the UNLOAD command is:

UNLOAD filename [n]

If ri is 0 or omitted, it is assumed to be 1. A negative value for n
UNLOADS the preceding n-1 lines and the current line, in the correct
order.

- 15 December 1980

SECTION 4 PDR4130

The last line UNLOADed is the new current line. Be careful not to
specify a filename currently in use unless you want the old file wiped
out.

UNLOAD does not delete the lines of the work file as it writes these
lines into the file filename.

Example:

TOP
PRINT 6
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50) , LSTORE (50)
DO 100 I = 1, 10

NEXT -4
,C This program g e n e r a t e s the numbers 1 t o 10
UNLOAD TEMP 3
PRINT 2
C

DIMENSION LNUMB (50), LSTORE (50)
TOP
PRINT 6
.NULL.
C This program generates the numbers 1 to 10
C and prints the numbers on the terminal screen.
C

DIMENSION LNUMB (50) , LSTORE (50)
DO 100 I = 1, 10

Ending and Saving an EDITOR Session

The QUIT, FILE, and SAVE commands end and/or save the current EDITOR
session.

The QUIT Command: The QUIT command tells the EDITOR you do not want to
save the EDITOR work, file, instead want to preserve the original and
want to return to PRIMOS-level. The format of the QUIT command is:

QUIT

If you have created or modified a file during the session, EDITOR
responds to a QUIT with:

FILE MODIFIED, OK TO QUIT?

This message asks whether EDITOR may throw away the work file.

A YES (or Y, YE, 0, OK, or NULL line RETURN) response returns you to
PRIMOS without saving the current session's editing. Any other
response provokes a PLEASE FILE message (see the explanation of the

REV. 0 4 - 1 6

PDR4130 CREATING AND LISTING FILES

FILE command). If you did not create or modify a file, saying QUIT
automatically returns you to PRIMOS.

The FILE Command: The FILE command turns the EDITOR work file (which is
so far only a temporary file) into a permanent file in your UFD and
returns you to PRIMOS.

WARNING

Since the work file does not exist outside of EDITOR, you must
FILE if you want to save your work. If you do not FILE or SAVE
your work, it will be destroyed.

The format for the FILE command is:

FILE [filename]

If you have been creating a new file, you must specify filename. (The
error message FILENAME MUST BE SPECIFIED occurs if you don't.)

You cannot have two files with the same name in the same UFD! If you
give a filename which already exists in your UFD, EDITOR will delete
the old file of that name from your UFD (without any warning) , and put
the EDITOR work file in its place.

The same warning holds true for old files. If you have been working on
an old file, and you specify the old filename, or say FILE without any
filename, your old copy will be deleted, and your new version kept.
Giving a new filename keeps both the old and new versions.

The rules for making filenames are:

1. Filenames can be up to 32 characters long.

2. Filenames can contain only the following characters: A through
Z, 0 through 9, & - $ * . _ / #

3. The first character may be any legal character except a digit.

4. Characters NOT permitted in filename include: imbedded blanks
and special characters such as ? ! @ ; , "

5. Uppercase and lowercase letters are treated as uppercase by
PRIMOS. (Letters entered in lowercase are converted to
uppercase.)

Valid Filenames Invalid Filenames

NEWFILE A?
Todays-Prices Two@John
Highs&Lows "Eureka"
$monthly.REPORT Why a Duck
R34587 lfile
A-tale-of-two -cities

- 17 December 1980

SECTION 4 PDR4130

The FILE command can also be used to make copies of any file, simply by
typing ED plus filename and FILEing the copied work file immediately
with a new filename, as in:

OK, ED FTN.TEST
EDIT
FILE TEST

OK,

The SAVE Command: The SAVE command writes the contents of the current
EDITOR session into filename but does not leave the EDITOR or terminate
the current session. The format of the SAVE command is:

SAVE filename

filename is the name of the file you want the current session copied
to. If filename is not specified, the current EDITOR session is
written into the filename being edited.

REV. 0 4 - 1 8

PDR4130 CREATING AND LISTING FILES

SAMPLE EDITING SESSIONS

Here are three examples showing the writing and editing of source
files.

A PL/1 Example

OK, ED
INPUT

EDIT
TABSET 3 6 9 12 18 21
SYMBOL SEMICO {

INPUT
\D0 1=1 TO 10
\\DO J=l TO 10;
\\\X(I,J=A(I)+B(I);
\\\Y(IfJ)=SQRT(X(l7J));
WEND; /*J-LOOP*/
\END; /*I-LOOP*/

EDIT
TOP
NEXT
DO 1=1 TO 10

APPEND ;
DO 1=1 TO 10;

NEXT 2
X(I,J=A(I)+B(I);

CHANGE/J/J)
X(I,J)=A(I)+B(I);

TOP
PRIT ?PRINT 99
.NULL.
DO 1=1 TO 10;

DO J=l TO 10;
X(I,J)=A(I)+B(I);
Y(I,J)=SQRT(X(I,J));

END; /*J-LOOP*/
END; /*I-LOOP*/

BOTTOM
FILE ED.EX

OK,

An empty l i n e p u t s us in e d i t mode

Set t a b s for PL/I code
Change EDITOR'S d e l i m i t e r symbol
Empty l i n e pu t s us in input mode

Type in source code using t abs
to show l e v e l s of i n d e n t a t i o n

Go to top of f i l e
F i r s t non-nul l l i n e

Add a fo rgo t ten semicolon

Down two l i n e s

Balance pa ren theses

Check code before f i l i n g

Name a new f i l e when you f i l e i t

- 19 December 1980

SECTION 4 PDR4130

A FORTRAN Example

OK, ED
INPUT

EDIT
TABSET 7 45

INPUT
\A-"=30V* COMMENT
\B=40

Useful s e t t i n g s for FORTRAN

Quote mark e r a s e s one c h a r a c t e r

C-A?\C=A+B
\PRINT 10,C
CALL EXTI""IT
\END

Question mark e r a s e s e n t i r e l i n e .

EDIT
FILE FTN.TEST

OK, ED FTN.TEST
EDIT
PRINT 20
.NULL.

A=30 / * COMMENT
B=40
C=A+B
PRINT 10,C

CALL EXIT
END

BOTTOM
NEXT -3

PRINT 10,C
TABSET 7 45
INSERT 10\FORMAT('THE ANSWER I S ' , 1 4)
TOP, PRINT 20
.NULL.

A=30 / * COMMENT
B=40
C=A+B
PRINT 10 ,C

10 FORMATCTHE ANSWER I S 1 , 1 4)
CALL EXIT

END
BOTTOM
FILE No need to use a f i lename t h i s t ime
FTN.TEST

OK,

Move up three lines

Set FORTRAN tabs again
Insert forgotten line
Check file once more

REV. 0 - 20

file:///PRINT

PDR4130 CREATING AND LISTING FILES

A COBOL Example

OK, ED
INPUT

EDIT
MODE COLUMN

INPUT
1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890123456789
ID DIVISION.

\

PROGRAM-ID. TEST. Source coding i s keyed i n ,
INSTALLATION. PRIME. a l igned by column.

The f i r s t tab default i s position
6. A space after the backslash
character positions the as te r i sk
in the continuation column 7.

EDIT
FILE COBOL.TEST

OK, ED COBOL.TEST
EDIT
PRINT 23
.NULL.

ID DIVISION.
PROGRAM-ID. TEST.
INSTALLATION. PRIME.

*

BOTTOM
FILE
COBOL.TEST

OK,

- 21 December 1980

SECTION 4 PDR4130

LISTING PROGRAMS

Terminal Listing

Source programs may be listed at the terminal by using the SLIST
command, described in Section 3.

Line Printer Listing

Use the SPOOL command (explained below) to obtain a copy of a source
file on the system line printer.

Renaming

Programs may be renamed with the PRIMOS command CNAME (Section 3) . You
must have owner s t a tus in the UFD in order to use t h i s command.

Deleting

Programs may be deleted with the PRIMOS command DELETE (Section 3)
You must have delete access in order to use this command.

PRINTING FILES WITH THE SPOOL COMMAND

Printed copies of files from a line printer are obtained with the SPOOL
command. It has several options, some of which will not apply to all
systems, as systems may be configured differently. The format is:

SPOOL pathname [options]

PRIMOS makes a copy of pathname in the Spool Queue for the line
printer, and displays the message:

Your spool file, PRTnnn, is x record[s] Jong.

nnn is a 3-digit number which identifies the file in the Spool Queue.
x is number of records in the file. PRIMOS spools out short files as
soon as possible; long files receive a lower priority. For example:

OK, spool example
[SPOOL rev 17.2]
Your spool file, PRT015, is 2 records long.

OK, spool tekman>alice>update
[SPOOL rev 17.2]
Your spool file, PRT016, is 1 record long.

OK,

REV. 0 4 - 2 2

PDR4130 CREATING AND LISTING FILES

In t h i s example, one f i l e was spooled by f i lename and t h e o t h e r by
pathname. Hswever, SPOOL w i l l r e f e r to both by t h e i r f i l enames , t h a t
i s , EXAMPLE and UPDATE.

Checking the Queue

To check the s t a t u s of the Spool Queue, g ive the command:

SPOOL -LIST

PRIMOS r e t u r n s a l i s t of a l l t he f i l e s on the Queue which have no t ye t
been p r i n t e d . Addi t ional in fo rmat ion , such a s the s i z e , d e s t i n a t i o n ,
the PRT number, any o p t i o n s , t he form-type and the login-name of the
user who spooled t he f i l e , a r e a l s o s p e c i f i e d . For example:

OK, spool - l i s t
[SPOOL rev 17.4]

user p r t t ime name s i z e o p t s / # form defe r a t : CAROUSEL

BLAISE 006 11:08 VISTA-REPORT
GRACE 007 9:31 $S4.4303
TEKMAN 008 9:32 $S7.4130
ALICE 009 9:32 INDEX

2
44
9
1

WHITE
WIDE
NOW

1
1

Cancelling a Spool Request

To cancel one or more spool requests, the command format is:

SPOOL -CANCEL [PRT]n-1 [,n-2...]

where n-1, n-2, etc., are the numbers of your spool files to be
cancelled. For example:

OK, spool -cancel 47 048 prt049
[SPOOL rev 17.0]
PRT047 has been cancelled.
PRT048 has been cancelled.
PRT049 has been cancelled.

Printing Multiple Copies

You can request several copies of one file by using the -COPIES option:

SPOOL pathname -COPIES n

n is the number of copies desired.

23 December 1980

SECTION 4 PDR4130

Deferring P r in t i ng

The -DEFER opt ion t e l l s the Spooler not to begin p r i n t i n g the i nd i ca t ed
f i l e u n t i l the system time matches the t ime s p e c i f i e d with DEFER. This
permi t s you to e n t e r SPOOL reques t s a t your convenience , r a t h e r than
wai t ing for t he app rop r i a t e hour.

Specify the DEFER opt ion by:

SPOOL pathname -DEFER time

The format for time i s HH [:] MM [AM/PM] . If AM or PM i s g i v e n , HH:MM
(the colon i s op t iona l) must be in 12-hour format (e . g . , 1000 PM) .
Otherwise, t ime w i l l be i n t e r p r e t e d as 24-hour format (in which 2200 i s
10:00 PM and 1000 i s 10:00 AM).

P r in t ing on Special Forms

Line p r i n t e r s t r a d i t i o n a l l y use one of two types of paper — "wide"
l i s t i n g pape r , on which most program l i s t i n g s a p p e a r , and 8-1/2 x
11-inch white paper , which i s s tandard for memos and documenta t ion .
Computer rooms of ten s tock a v a r i e t y of s p e c i a l paper forms for s p e c i a l
purposes , such a s 5-copy s e t s , p r e - p r i n t e d forms (checks , o r d e r s ,
i n v o i c e s) , or odd s i z e s or c o l o r s of paper .

Request a s p e c i f i c form by:

SPOOL pathname -FORM form-name

form-name i s any s i x - c h a r a c t e r (or l e s s) combination of l e t t e r s . A
l i s t of a v a i l a b l e form names can be obta ined with t he PROP command,
explained in the PRIMPS Commands Reference Guide.

Changing the Header

The -AS op t ion t e l l s t he spooler to p r i n t your f i l e under a d i f f e r e n t
name. The form i s :

SPOOL pathname -AS a l i a s

The a l i a s w i l l appear on t he header and in the SPOOL -LIST d i s p l a y .

P r i n t i ng a t Spec i f ic Locations

Networks with seve ra l p r i n t e r s of ten a r range to have the p r i n t e r s read
each o t h e r ' s queues . I t i s t h e r e f o r e p o s s i b l e for a spool r eques t to
be p r in t ed a t another l o c a t i o n , perhaps many mi l e s d i s t a n t . To insu re
t h a t a spool r eques t i s p r in ted where you want i t , use t he -AT o p t i o n :

SPOOL pathname -AT d e s t i n a t i o n

REV. 0 4 - 2 4

PDR4130 CREATING AND LISTING FILES

destination is a word of 16 letters or less. A list of available
destination-names can be obtained with the PROP command, explained in
the PRIMPS Commands Reference Guide. (If a destination appears in the
heading of the SPOOL -LIST display, for example, at: CAROUSEL, then
that destination is the default destination for spool requests. If no
destination folows "at:", then no default has been established, and
spool requests without destinations may be intercepted by any available
printer.

Eliminating Headers

To have files printed without header or trailer pages, use the -NOHEAD
option:

SPOOL pathname -NOHEAD

This option is particularly useful with preprinted forms, but if you're
using this option in a multi-user environment, you will have to
identify your own jobs.

Multiple Options

Any or all of the above options may be used jointly in a single SPOOL
command line. If -LIST or -CANCEL is included, it must be the last
option on the command line. For example:

OK, spool o 17 -as ex.1 -at bldg.l -defer 22:00
[SPOOL rev 17.0]
Your spool file, PRT048, is 1 record long.

This particular command requests that the file named "0_17" be printed
at the "bldg.l" printer, under the alias of "EX.l", at 10 pm (22:00).

PRINTING SEVERAL FILES IN ONE WITH THE CONCAT COMMAND

The CONCAT command concatenates files into a single file, which can
then be printed via the SPOOL command. The format for CONCAT is:

CONCAT new-filename [-options]

Options govern the format of the print-out and the disposition of the
files. For details, see CONCAT in the PRIMPS Commands Reference Guide.

When you give the CONCAT command without options, CONCAT goes into
input mode. It asks for the names of the files to be concatenated, and
prints a colon prompt. Type the filenames, one per line. A null line
(carriage return) signals the end of list. CONCAT then goes into
command mode, and prints a right-angle prompt. You can then type a
QUIT to end the session. (You can also type "INPUT" to return to input
mode; or you can give various formatting commands, explained in the

- 25 December 1980

SECTION 4 PDR4130

PRIMOS Commands Reference Guide.)

A sample session might be:

OK, concat triplet
[CONCAT Rev 17.0]

Enter filenames, one per line:
: first
: second
: third
: (CR)

> 3

OK,

If the file TRIPLET already exists, CONCAT asks:

OK TO MODIFY OLD TRIPLET?

Answering NO returns you to PRIMOS command level. Answering YES
prompts a second question:

OVERWRITE OR APPEND:

Answering OVERWRITE causes CONCAT to replace the old TRIPLET with a new
one. Answering APPEND preserves the existing contents of TRIPLET and
adds the new ones at its end.

REV. 0 4 - 2 6

PDR4130 COMPILING PROGRAMS

SECTION 5

COMPILING PROGRAMS

After the source code has been entered i n to the system, i t must be
compiled. Compilation c r e a t e s a new f i l e of l i n k a b l e code—the o b j e c t
(or binary) f i l e . Each h i g h - l e v e l language has i t s own compiler which
c r e a t e s o b j e c t code from source code . At t he o b j e c t code l e v e l , t he se
languages a r e e q u i v a l e n t . Thus, modules of o b j e c t code o r i g i n a t i n g
from d i f f e r e n t source languages may be l inked t o g e t h e r to form a
run-t ime program. (Further comments on t h i s w i l l be found a t t he end
of t h i s s e c t i o n .) D e t a i l s of Pr ime 's compi lers a r e t r e a t e d in the
ind iv idua l language user g u i d e s . This s ec t i on w i l l cons ide r f e a t u r e s
common to a l l c o m p i l e r s .

Pr ime's convention for source f i l e names uses compiler-name s u f f i x e s .
The s u f f i xe s a r e sepa ra ted from the "base name" of t he f i l e by a d o t .
Thus, a FORTRAN IV program with a base name DRAGON would be named
DRAGON.FTN, while a FORTRAN 77 program with a base name WYVERN would be
named WYVERN.F77. This naming convent ion h e l p s you keep t r a c k of t h e
types of f i l e s in your d i r e c t o r i e s . I t a l so he lps you access groups of
f i l e s using CPL's WILD func t ion . (See Tne CPL U s e r ' s Guide for
d e t a i l s .)

Table 5-1 l i s t s t h e s u f f i x e s recognized by v a r i o u s Prime so f twa re .

INVOKING THE COMPILER

The compiler i s invoked from PRIMOS command l e v e l by t h e command:

compiler pathname [opt ions]

compiler i s t he compiler for t he language in which the source program
i s w r i t t e n . Current compi le rs a r e :

Compiler

COBOL

F77

FTN

Pascal

PL1G

RPG

Language

COBOL

FORTRAN 77

FORTRAN IV

Pascal

PL/I Subset G

RPG II

December 1980

SECTION 5 PDR4130

Suffix

BASIC

BIN

COBOL

CPL*

F77

FTN

LIST

PASCAL

PL1G

PMA

RPG

SAVE

SEG

SPSS

Table 5 - 1 . Recognized Filename Suff ixes

Waning

BASIC/VM source f i l e

Binary f i l e (created by compiler)

COBOL source f i l e

CPL program

FORTRAN 77 source f i l e

FORTRAN IV source f i l e

L is t ing f i l e (created by compiler)

Pascal source f i l e

PL/If Subset G, source f i l e

PMA source f i l e

RPGII source f i l e

Recognized
by:

BASIC/VM

LOAD, SEG

COBOL compiler

RESUME, CPL
JOB, PH

F77 compiler

FTN compiler

Supplied
by:

user

compilers
or user

user

user

user

user

compilers,
SPSS, user

PASCAL compiler

PL1G compiler

PMA assembler

RPG compiler

Runfi le c rea ted by R-mode l o a d e r , LOAD LOAD, RESUME

Segment d i r e c t o r y c rea ted by SEG

SPSS da ta f i l e

SEG

SPSS

user

user

user

user

LOAD
or user

SEG
or user

user

* = Requi red

REV. 0

PDR4130 COMPILING PROGRAMS

pathname is the pathname of the source program file. Each compiler
recognizes its own suffix. This means that you do not have to specify
the suffix when you are invoking the compiler named by the suffix.
When a compiler is invoked, it looks first for pathname plus its
suffix. If the filename with a suffix is not found, the compiler then
looks for pathname without the identifying suffix. For example, typing
"FIN DRAGON" causes the FIN compiler to look first for DRAGON.FTN. If
it doesn't find DRAGON.FTN, it then looks for DRAGON.

options allow specification of the creation of object and listing
files, the mode in which the object code is to be generated, the types
of cross references and listings to be generated, debugger interfaces
and the like. These options may be common to all compilers or unique
to a particular language. The common options are summarized in Table
5-2 and discussed in the following paragraphs.

OBJECT FILES

In all compilers, the default is to create an object file. The default
name of an object file depends on the name of the source file when it
is created. If the source file name was created with a compiler
identifying suffix, the object file name is filename.BIN. For example,
the object filename of PAYROLL.COBOL is PAYROLL.BIN. (For
compatability with older files, the default object filename for files
without identifying suffixes is B_filename.)

A non-default binary filename can be created (or suppressed) with the
-BINARY option (abbreviation -B) . This allows you to use the .BIN
suffix even if the source filename is not suffixed. Possible arguments
for this option are:

Argument Meaning

-BINARY YES Create binary file with default name

-BINARY NO Do not create binary file

-BINARY pathname Create binary file called pathname

December 1980

SECTION 5 PDR4130

Table 5-2. Compiler Defaul ts

Compiler

COBOL

F77

FTN

Pascal

PL1G

RPG

Binary/
Object
File

yes

yes

yes

yes

yes

yes

Listing
File

yes

no

no

no

no

yes

Cross-
Reference

no

no

no

no

no

yes

Mode

64V

64V

32R

64V

64V

64R

LISTING FILES

Each compiler can c r e a t e a f i l e l i s t i n g the source program.
Language-specif ic op t i ons a r e a v a i l a b l e to expand on t h e s e l i s t i n g s and
add more in format ion . The s tandard l i s t i n g i s genera ted by d e f a u l t for
a l l compi lers except FTN and F77. The opt ion to c r e a t e a l i s t i n g f i l e
i s -LISTING (abbrev ia t ion -L) . The d e f a u l t name, which i s formed in
the same way a s t he d e f a u l t ob j ec t f i l e name, i s f i lename.LIST (or
L_filename, i f t he source filename has no suff ix) . The arguments for
the -LISTING opt ion a r e :

Argument

-LISTING YES

-LISTING NO

-LISTING pathname

-LISTING TTY

-LISTING SPOOL

Meaning

Create l i s t i n g f i l e with d e f a u l t name,

Do not c r e a t e l i s t i n g f i l e .

Create l i s t i n g f i l e c a l l e d pathname.

P r in t l i s t i n g f i l e a t t e r m i n a l .

P r i n t l i s t i n g f i l e on l i n e p r i n t e r .

REV. 0

PDR4130 COMPILING PROGRAMS

CROSS REFERENCE

Each language has i t s p a r t i c u l a r c r o s s re fe rence l i s t i n g . Each l i s t s
the program's v a r i a b l e s , t e l l s where they appear in t he program, and
provides o t h e r useful in format ion . Speci f ic d e t a i l s a r e in each
language g u i d e . Cross r e f e r ences a r e l i s t e d by d e f a u l t for RPG o n l y .
In o ther l anguages , t h e c r o s s - r e f e r e n c e s l i s t i n g i s genera ted by using
the op t ion -XREF in t he command l i n e .

CODE GENERATION

The addressing mode in which object code is to be loaded must be chosen
at compilation time. Prime's compilers can generate object code to be
loaded in several addressing modes. Table 5-3 shows which types of
code can be generated by each compiler.

Table 5-3. Code Generation

FORTRAN 77 (F77)

FORTRAN IV (FTN)

Pascal

PL/1 Subset G

COBOL

RPG

321

/

/

V

64V

/

/ '

•

/

/

64R

/

/

32R

/

In general, 64V mode is the mode of choice. This is the default on all
compilers except FORTRAN IV (FTN) and RPG II (RPG) . At present, the
RPG compiler generates only 64R mode code. To generate 64V mode code
in FORTRAN IV, use the 64V option in the command line. For example:

FTN GOOD -LISTING YES -64V

compiles the program GOOD,
listing file, GOOD.LIST.

producing 64V mode code and creating a

Tne FORTRAN 77 (F77) , Pascal, and PL/I (PL1G) compilers can also
generate 321 mode code. 321 mode code handles double-precision
floating-point arithmetic more rapidly than the other modes do.
Therefore, it is the mode of choice for many mathematical calculations.
To generate 321 mode code, use the 321 option in the command line, as
in:

F77 CHEERS -321

December 1980

SECTION 5 PDR4130

LOADING

All code generated in 64V or 321 mode is loaded with SEG. (This
procedure is often called linking on other systems.) Code generated in
32R or 64R mode is loaded with LOAD. These loaders (or linkers) are
summarized in Section 5, and explained in detail in the LOAD and SEG
Guide.

COMPILER MESSAGES

If a compilation completes successfully, a message to that effect is
printed at the user's terminal (or into the user's COMOUTPUT file, if
the compilation is not interactive. See Section 7 for information on
COMOUTPUT files.) If compilation is not successful, error and/or
warning messages will indicate the offending line and the offense.
Some severe errors halt the compilation as soon as they are discovered.
Others allow the compilation to proceed. Each compiler has its own
error messages.

Error messages printed by the F77 and PL1G compilers include
explanatory comments. Error messages generated by the FTN, COBOL, and
RPG compilers are discussed in those language guides.

COMBINING LANGUAGES IN A PROGRAM

Since all high-level languages are alike at the object code level, and
since all use the same calling conventions, programs compiled by the
FTN, F77, COBOL, or PL1G compilers can call subroutines compiled by any
of the other three compilers. For example, a program written in COBOL
could call a subroutine written in FORTRAN 77 which might use a utility
subroutine written in PL/I-G. Procedures compiled by the high-level
language compilers may also call, or be called by, procedures written
in Prime's assembler language, PMA. The following cautions, however,
should be observed:

• All I/O routines should be written in a single language.

• Be sure that there is no conflict in data types for variables
being passed as arguments. For example, an integer in FORTRAN
should be declared as fixed binary in PL/I* Also, remember that
PL/I and COBOL may not interpret structures identically.

• All procedures within a program must use compatible addressing
modes. Do not put R-mode procedures into a V-mode or I-mode
program, or vice versa. (V-mode and I-mode are compatible
within programs.)

• Some special restrictions must be observed when FTN and F77
routines are linked together. These are discussed in The
FORTRAN 77 Reference Guide.

REV. 0

PDR4130 LOADING PROGRAMS

SECTION 6

LOADING PROGRAMS

INTRODUCTION

PRIMOS has two u t i l i t i e s for loading programs: SEG and LOAD. SEG
loads (and runs) V-mode and I-mode programs; LOAD loads R-mode
programs. This s e c t i o n exp l a in s the bas i c use of SEG and LOAD for
programs w r i t t e n in h i g h - l e v e l l anguages . Language-specif ic a s p e c t s of
loading programs a r e t r e a t e d in the ind iv idua l language g u i d e s . The
loade r s a r e expla ined in d e t a i l in the LOAD and SEG Reference Guide.

SEG

The PRIMOS SEG u t i l i t y c o n v e r t s o b j e c t modules (such a s those genera ted
by the FTN, F77, COBOL, and PLIG compilers) i n to segmented r u n f i l e s
t h a t execute in the 64V address ing mode and take f u l l advantage of the
a r c h i t e c t u r e and i n s t r u c t i o n s e t of the Prime 350 and up . Segmented
r u n f i l e s o f f e r t h e following advan tages :

• Much l a r g e r programs: up to 256 segments per user program (3?
Megabytes)

• Access to V-mode i n s t r u c t i o n s and a r c h i t e c t u r e (Prime 350 and
up) for f a s t e r execut ion

• A b i l i t y to i n s t a l l shared code : a s i n g l e copy of a procedure
can s e r v i c e many u s e r s , s i g n i f i c a n t l y reducing paging time

• Re-en t ran t procedures p e r m i t t e d : procedure and da t a segments
can be kept s epa ra t e

The fol lowing d e s c r i p t i o n emphasizes the commands and func t ions t h a t
a r e of most use to h i g h - l e v e l language programmers. Extended f e a t u r e s ,
a s well a s a complete d e s c r i p t i o n of a l l SEG commands, inc lud ing those
for advanced sys t em- leve l programming, a r e descr ibed in The LOAD and
SEG Reference Guide.

USING SEG UNDER PRIMOS

SEG i s invoked by PRIMOS command:

SEG [pathname]

or
SEG -LOAD

6 - 1 December 1980

SECTION 6 PDR4130

A pathname i s g iven only when an e x i s t i n g SEG r u n f i l e i s t o be
executed . (See Sect ion 7.) Otherwise, t he command t r a n s f e r s c o n t r o l
to SEG command l e v e l , which p r i n t s a "#" prompt c h a r a c t e r and a w a i t s a
SEG command. After execut ing a subcommand s u c c e s s f u l l y , t h e loader
r e p e a t s the prompt c h a r a c t e r . (SEG's loader p r i n t s a $ prompt to
r eques t i t s subcommands.)

When the -LOAD op t ion i s used, SEG e n t e r s the loader a u t o m a t i c a l l y and
r e q u e s t s LOAD subcommands. Using t h i s op t ion a l s o causes SEG to c r e a t e
a segment d i r e c t o r y with the filename x.SEG, where x i s the base name
of the f i r s t f i l e loaded . (De ta i l s and examples of t h i s loading
process a r e shown l a t e r in t h i s c h a p t e r .)

If an e r r o r occurs during an o p e r a t i o n , SEG p r i n t s an e r r o r message,
then the prompt c h a r a c t e r . Error messages and suggested handl ing
techniques a r e d i scussed in t h i s s ec t ion and in Appendix D.

When a system e r r o r (F i l e in u se , I l l e g a l name, I n s u f f i c i e n t acces s
r igh t s , , e t c .) i s encountered , SEG p r i n t s t he system e r r o r and r e t u r n s
the prompt symbol.

SEG remains in c o n t r o l u n t i l a QUIT subcommand r e t u r n s c o n t r o l to
PRIMOS, or an EXECUTE subcommand s t a r t s execut ion of t he loaded
program.

SEG subcommands can be used in command f i l e s , bu t comment l i n e s a r e
accepted on ly wi th in i t s LOAD subprocessor .

NORMAL LOADING

Loading i s normally a simple ope ra t ion with on ly a few s t r a igh t fo rwa rd
commands needed. (SEG has many a d d i t i o n a l f e a t u r e s to opt imize r u n f i l e
s i z e or speed, perform d i f f i c u l t l o a d s , load for shared p rocedure s , and
dea l with p o s s i b l e compl i ca t ions . These a r e descr ibed in The LOAD and
SEG Reference Guide.)

The following commands (shown in abbrevia ted form) accomplish most
lo ad i ng func t i ons .

SEG-Level Commands

DELETE Deletes segmented r u n f i l e .

HELP P r i n t s a l i s t of SEG commands a t t e r m i n a l .

LOAD Invokes loader subprocessor for e n t r y of subcommands.

REV. 0

PDR4130 LOADING PROGRAMS

LOAD Subcommands

LOAD pathname Loads spec i f i ed ob j ec t f i l e .

LIBRARY [fi lename] Loads l i b r a r y o b j e c t f i l e s from UFD LIB.
(Default i s PFTNLB and IFTNLB)

MAP [opt ion]

INITIALIZE

SAVE

RETURN

QUIT

P r i n t s loadmap. Option 3 shows unresolved
r e f e r ences (usua l ly s u b r o u t i n e s which have not
been l o a d e d) . Mapping i s expla ined in The LOAD
and SEG Reference Guide.

Returns loader to s t a r t i n g c o n d i t i o n in case of
command e r r o r s or f a u l t y l o a d .

Saves loaded memory image a s r u n f i l e .

Returns to SEG command l e v e l .

Return to PRIMOS.

Note

SEG recognizes the .BIN suffix for binary files. Thus, to tell
SEG to load the file X.BIN, you need only type "LO X". SEG
also recognizes the .SEG suffixx for subcommands that take
segment directories as input files: for example, DELETE and
RESTORE. Thus, saying:

OK, SEG
DELETE X

d e l e t e s X.SEG (i f t h a t segment d i r e c t o r y e x i s t s) . If X.SEG
d o e s n ' t e x i s t , SEG looks for the segment d i r e c t o r y X, d e l e t i n g
i t i f i t f i nds i t .

Most loads can be accomplished by the following b a s i c p rocedure :

1. Give t he command SEG -LOAD.

2. Use t he LOAD subcommand to load the o b j e c t f i l e and any
s e p a r a t e l y compiled s u b r o u t i n e s .

4. Use the LIBRARY subcommand to load s u b r o u t i n e s c a l l e d from
l i b r a r i e s .

5. If you do not r e c e i v e a LOAD COMPLETE message, do a MAP 3 t o
i d e n t i f y t he u n s a t i s f i e d r e f e r e n c e s , and load them. If the
u n s a t i s f i e d r e f e r ences a r e t he r e s u l t of having misspe l l ed some
subrou t ine names, you may want to i n i t i a l i z e and re-do t he
l o a d .

December 1980

SECTION 6 PDR4130

6. When you have gotten the LOAD COMPLETE message, SAVE the
runfile. SEG will give the runfile the default name
filename.SEG, where filename is the name (without suffix) of
the first object file loaded.

After a successful load, you can either start runfile execution from
loader command level, or quit from the loader and start execution
through the PRIMOS RESUME command. An example of such a load is:

01
$ LO
$ LI
LOAD
$
$

SA
QU

OK,

SEG -LOAD
DRAGON

COMPLETE

If you want to specify your own name for the segment directory, use the
following sequence for loading:

1. Invoke SEG from PRIMOS level.

2. Enter the LOAD command to initiate the loading process. At
this point, SEG requests a name for the segment directory to be
created. Type in the name you desire. (SEG will add the .SEG
suffix automatically.)

3. Use the LOAD subcommand to load the object file and any
separately compiled subroutines.

4. Use the LIBRARY subcommand to load subroutines called from
libraries.

5. If you do not receive a LOAD COMPLETE message, do a MAP 3 to
identify the unsatisfied references, and load them. If the
unsatisfied references are the result of having misspelled some
subroutine names, you may want to initialize and re-do the
load.

6. SAVE the run f i l e .

If these commands produce a LOAD COMPLETE message, then loading was
accomplished. If there is a problem, it will become apparent by the
absence of a LOAD COMPLETE message or some other SEG error message.
(See Appendix D for a complete list of all SEG error messages and their
probable cause and correction.)

After a successful load, you can either start runfile execution from
loader command level, or quit from the loader and start execution
through the PRIMOS SEG command. An example of such a load is:

REV. 0

PDR4130 LOADING PROGRAMS

OK, SBG
[SEG

REV 18 .1]
LOAD

SAVE
$ LO
$ LI
LOAD
$
$

SA

QU

FILE TREE
B_BENCH9

COMPLETE

NAME: #BENCH9

OK,

Order o f Loading

The f o l l o w i n g l o a d i n g o r d e r i s recommended:

1 . Main program

2 . S e p a r a t e l y c o m p i l e d u s e r - g e n e r a t e d s u b r o u t i n e s (p r e f e r a b l y i n
o r d e r o f f r e q u e n c y o f use)

3 . L a n g u a g e - s p e c i f i c l i b r a r i e s (PLIGLB f o r PL/ I , PASLIB f o r
P a s c a l , VCOBLB and p o s s i b l y NCCBLB fo r COBOL)

4 . Other Pr ime L i b r a r i e s (LI f i l e n a m e) , s u c h a s VAPPLB(V-mode
a p p l i c a t i o n s l i b r a r y) , VSRTLI (V-mode s o r t l i b r a r y) , VDKALB
(MIDAS l i b r a r y)

5 . S t a n d a r d Prime l i b r a r y (LI)

For e x a m p l e , a COBOL program which u s e s MIDAS f i l e s would be l o a d e d a s
f o l l o w s :

OK, SEG -LOAD
[SEG REV 18 .1]
$ LOAD MAIN
$ LOAD SUBR
$ LI VCOBLB
$ LI NCOBLB

$ LI VKDALB
$ LI
LOAD COMPLETE
$ SAVE
$ QUIT
OK,

Main program f i r s t .
S e p a r a t e l y compi l ed s u b r o u t i n e n e x t .
Shared COBOL l i b r a r y : a l w a y s u s e d .
Non-Shared l i b r a r y : used w i t h s e p a r a t e l y - c o m p i l e d
s u b r o u t i n e s
MIDAS l i b r a r y : used w i t h MIDAS f i l e s .
S t a n d a r d (FORTRAN) l i b r a r y .

Save t h e f i l e image
R e t u r n t o PRIMOS command l e v e l .

December 1980

SECTION 6 PDR4130

THE R-MODE LOADER

The PRIMOS LOAD utility converts object modules (such as those
generated by the FTN or RPG compilers) into runf iles that execute in
the 32R or 64R addressing modes. (Runfiles to execute in the 64V mode
must be loaded using the segmentation utility, SEG.)

LOAD recognizes the .BIN suffix for object files. If you give the name
X, LOAD looks for X.BIN. If it does not find X.BIN, it looks for X.

LOAD uses the .SAVE suffix for the runfiles it creates.

The following description emphasizes the loader commands and functions
that are of most use to the FORTRAN and RPGII programmer. For a
complete description of all loader commands, including those for
advanced system-level programming, refer to The LOAD and SEG Reference
Guide.

USING THE LOADER UNDER PRIMOS

The PRIMOS command:

LOAD

transfers control to the R-mode loader, which prints a $ prompt
character and awaits a loader subcommand. After executing a command
successfully, the loader repeats the $ prompt character.

If an error occurs during an operation, the loader prints an error
message, then the $ prompt character. Loader error messages and
suggested handling techniques are discussed elsewhere in this section
and in Appendix D. Most of the errors encountered are caused by large
programs where the user is not making full use of the loader
capabilities.

When a system error (File in use, Illegal name, Insufficient access
rights, etc.) is encountered, the loader prints this system error and
returns its prompt symbol, $.

The loader remains in control until a QUIT or PAUSE subcommand returns
control to PRIMOS, or an EXECUTE subcommand starts execution of the
loaded program.

Load subcommands can be used in command files, but comment lines result
in a CM (command error) message unless they are preceded by '* ' .

REV. 0

PDR4130 LOADING PROGRAMS

NORMAL LOADING

Loading i s normal ly a simple ope ra t i on with on ly a few s t r a i g h t f o r w a r d
commands needed. The loader a l s o has many a d d i t i o n a l f e a t u r e s t o
opt imize r u n f i l e s i z e o r speed , perform d i f f i c u l t l o a d s , and dea l wi th
p o s s i b l e c o m p l i c a t i o n s . For d e t a i l s on t h e s e , see The LOAD and SEG
Reference Guide.

The following commands (shown in abbrev ia ted form) accomplish most
loading f u n c t i o n s .

PRIMOS-Level Commands

FILMEM Initializes user space in preparation for load.

LOAD Invokes loader for e n t r y of subcommands.

RESUME S t a r t s execut ion of a loaded , SAVEd r u n f i l e .

LOAD Subcommands

DC

MODE op t ion

LOAD pathname

Defers loading of COMMON u n t i l every th ing e l s e
has been loaded . This p r even t s o v e r l a p of
COMMON and program a r e a s .

Se ts r u n f i l e address ing mode a s D32R (defau l t)
or D64R.

Loads spec i f i ed ob j ec t f i l e .

LIBRARY [filename] Loads l i b r a r y ob j ec t f i l e s from UFD
(Default i s FTNLIB.)

LIB.

MAP [opt ion]

INITIALIZE

SAVE [pathname]

QUIT

Prints loadmap. Option 3 shows unresolved
references.

Returns loader to starting condition in case of
command errors or faulty load.

Saves loaded memory image as runfile. If
pathname is not given, LOAD creates a filename
from the name (without suffix) of the first
object file loaded plus the .SAVE suffix.

Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

1. Use the PRIMOS FILMEM command to initialize memory.

2. Invoke LOAD.

December 1980

SECTION 6 PDR4130

3. Use the MODE command to set the addressing mode, if necessary.
(The default is 32Rmode.)

4. Use loader's LOAD subcommand to load the object file and any
separately compiled subroutines. (LOAD will search first for
filenames plus the .BIN suffix, then for the given filenames
without the suffix.)

5. Use loader's LIBRARY subcommand to load subroutines called from
libraries (the default is FTNLIB in the UFD LIB) . Other
libraries, such as SRTLIB or APPLIB, must be named explicitly.

6. If you do not have a LOAD COMPLETE, do a MAP 3 to identify the
unsatisfied references, and load them. (If the DC option is
used, the LOAD COMPLETE message may not appear until the SAVE
command has been given.)

7. SAVE the runfile, either by giving an appropriate name (to
which LOAD will add the .SAVE suffix) , or by allowing LOAD to
create a default filename. (The default is the name (without
suffix) of the first object file loaded, plus the .SAVE
suffix.)

If these commands produce a LOAD COMPLETE message, then loading was
accomplished. If there is a problem, it will become apparent by the
absence of a LOAD COMPLETE message or some other loader error message.
(See Appendix D for a complete list of all loader error messages and
their probable cause and correction.)

After a successful load, you can either start runfile execution from
LOAD command level, or quit from the loader and start execution through
the PRIMOS RESUME command. An example of such a load is:

OK,FILMEM
OK, LOAD
$
$

DC
LO WYVERN

$ LI
LOAD COMPLETE
$
$

SA
QU

OK,

Order of Loading

The order of loading, procedures for mapping, etc., are the same for
LOAD as they are for SEG.

REV. 0

PDR4130 RUNNING PROGRAMS INTERACTIVELY

SECTION 7

RUNNING PROGRAMS INTERACTIVELY

OVERVIEW

Program Environments

Under PRIMOS, programs may execute in three environments:

• Interactive

• Phantom

• Batch

Interactive; This is the environment most often used. In it, program
execution is initiated directly by the user. The terminal is dedicated
to the program during execution. The program will accept input from
the terminal and will print at the terminal any output specified by the
program as well as user- or system-generated error messages. Major
uses are:

• Program development and debugging

• Programs requiring short execution time

• Data entry programs such as order entry, payroll, etc.

• Interactive programs such as the Editor, etc.

Phantom User: The phantom environment allows programs to be executed
while "disconnected" from a terminal. Jobs run as phantoms accept
input from a command file instead of a terminal; output directed to a
terminal is either ignored or directed to a file.

Major uses of phantoms are:

• Programs requiring long execution time (such as sorts)

• Certain system utilities (such as line printer spooler)

• Freeing terminals for interactive uses

Batch Jobs: Since the number of phantoms on a system is limited,
phantoms are not always available. The Batch environment (explained in
Section 9) allows users to submit non-interactive command files as
Batch jobs at any time. The Batch monitor (itself a phantom) queues
these jobs and runs them, up to six at a time, as phantoms become free.

December 1980

SECTION 7 PDR4130

These three environments offer users the following choices for
executing programs:

Interactive execution: Users can execute programs directly by using the
RESUME or SEG commands, as discussed later in this section. They can
also execute programs from either a command procedure file (also called
a CPL program) or a command input file (also called a COMINPUT file) .

These files allow sequences of PRIMOS commands and subcommands to be
written into text files, using the Editor. Invoking the files then
executes the commands. '

In addition, CPL programs can make run-time decisions about program
execution. They can have arguments passed to them, define variables,
and execute if statements, loops, and goto's. They are thus much more
powerful than COMINPUT files, and are generally preferred.

CPL programs are discussed in Section 8. COMINPUT files are discussed
in Section 9.

Phantom execution: Either CPL programs or special phantom files can
execute programs in a phantom environment. Phantoms are discussed in
Section 9.

Batch execution: Either CPL programs or COMINPUT files can be run as
Batch jobs. Batch execution is discussed in detail in Section 10.

What This Section Contains

This section treats the following topics:

• Use of the SEG command to execute segmented runfiles

• Use of the RESUME command to run R-mode runfiles

• Run-time error messages

EXECUTING SEGMENTED RUNFILES

For programs loaded and saved by SEG, execution is performed at the
PRIMOS command level using the SEG command:

SEG pathname

REV. 0

PDR4130 RUNNING PROGRAMS INTERACTIVELY

where pathname is the name of a SEG runfile. (SEG looks first for
pathname.SEG, then for pathname.) SEG loads the runfile into segmented
memory and starts execution. SEG should be used for runfiles created
by SEG's loader; it should not be used for program memory images
created by the R-mode loader. Example:

OK, SEG TEST /* user requests program
THIS IS A TEST /* output of program
OK, /* PRIMOS requests next command

Upon completion of program execution, control returns to PRIMOS command
level.

A SEG runfile may be restarted by the command:

S 1000

i f both t he SEG r u n f i l e and the copy of SEG used to invoke i t a r e in
memory.

EXECUTING R-MODE MEMORY IMAGES

For programs loaded in 32R or 64R mode by t he l o a d e r , execu t ion i s
performed a t the PRIMOS l e v e l using the RESUME command. Command l i n e
format for RESUME i s :

RESUME pathname

RESUME b r i n g s the memory-image program pathname from the d i s k i n t o the
u s e r ' s memory, loads t he i n i t i a l r e g i s t e r s e t t i n g s , and begins
execut ion of t he program. For example:

OK, R TEST / * User r e q u e s t s program
THIS IS A TEST / * Output of program
OK, / * PRIMOS r e q u e s t s next command

Note

RESUME should not be used for segmented (64V mode) programs.
Use the SEG command (discussed in the first part of this
section) instead.

When RESUME is invoked, it looks first for pathname. SAVE. If
pathname• SAVE cannot be found, RESUME looks for pathname.CPL. If
pathname.CPL cannot be found, RESUME looks for pathname without an
identifying suffix. For fastest search time, therefore, runfiles
should use the .SAVE suffix.

December 1980

SECTION 7 PDR4130

The Start Command

If a program has been made resident in memory (for example, by a
previous RESUME command) , the START command may be used to initialize
the registers and begin execution. Its format is:

START [start-address]

If START is typed without a value for start-address, the program
resumes at the address value at which execution was interrupted. To
restart the program at a different point, specify an octal starting
location as the start-address value; the usual default value for the
beginning of FORTRAN programs is 1000. For example:

OK, R TEST1 /* Begin
INPUT NEW KEY: _5 /* Program asks for input
QUIT /* User hit BREAK to stop
OK, S 1000 /* Restart program from beginning
INPUT NEW KEY:

START can also restart a program that has returned control to PRIMOS
(for example, because of an error or a FORTRAN PAUSE or CALL EXIT
statement) .

The applications programmer will almost always use the default forms of
the RESUME and START commands (the form discussed here). For a
complete treatment of these commands, see The PRIMOS Commands Reference
Guide•

Upon completion of the program, control returns to PRIMOS command
level.

RUN-TIME ERROR MESSAGES

During program execution, error conditions may be generated and
detected by the FORTRAN mathematical functions, file system subroutine
calls, or the operating system. A list of run-time error messages is
given in Appendix D.

Error messages specific to execution of segmented programs are labeled
64V mode. Some error messages imply system problems beyond the scope
of the applications programmer. If so, this is indicated in the
explanation of a given error message.

REV. 0

PDR4130 THE BASICS OF CPL

SECTION 8

THE BASICS OF CPL

WHAT IS CPL?

CPL i s Pr ime ' s "Command Procedure Language" — a h i g h - l e v e l language
t ha t o p e r a t e s a t PRIMOS command l e v e l . CPL p r o v i d e s :

• Var iab les

• Function c a l l s

• Branching (via such d i r e c t i v e s as &IF...&THEN...&ELSE, &GOTO,
& SELECT)

• Error handl ing and debugging f a c i l i t i e s

LEARNING CPL

CPL provides f e a t u r e s both for u se r s who want maximum ease of use for
simple programs and for u se r s who want maximum power and f l e x i b i l i t y .
This s e c t i o n p rov ides a b r i e f overview of CPLf and an i n t r o d u c t i o n to
the major "ease of use" f e a t u r e s . The CPL Use r ' s Guide p rov ides f u l l
t u t o r i a l and r e f e r ence information for a l l CPL f e a t u r e s .

HOW DOES CPL WORK?

CPL has two p a r t s : t he language and the i n t e r p r e t e r . The CPL language
al lows u s e r s to w r i t e CPL programs which con ta in e i t h e r a sequence of
PRIMOS commands or a combination of PRIMOS commands and CPL d i r e c t i v e s .
The commands g i v e i n s t r u c t i o n s to PRIMOS, or to one of i t s subsys tems.
The d i r e c t i v e s g i v e i n s t r u c t i o n s to the CPL i n t e r p r e t e r i t s e l f .
(PRIMOS never s ee s t h e s e d i r e c t i v e s ; i t s ees o n l y t h e commands which
the i n t e r p r e t e r pas ses to i t .)

When the programs a r e execu ted , the CPL i n t e r p r e t e r f i r s t e v a l u a t e s
v a r i a b l e s and funct ion c a l l s and r ep l ace s them with t h e i r c o r r e c t
v a l u e s . I t then i n t e r p r e t s and a c t s upon CPL d i r e c t i v e s . F i n a l l y , i t
passes t he r e s u l t i n g commands to PRIMOS for e x e c u t i o n . (Figure 8-1
i l l u s t r a t e s t he e v a l u a t i o n of a CPL d i r e c t i v e and the r e s u l t i n g
execut ion of a command.) Thus, a l eng thy s e r i e s of commands can be s e t
in motion by a s i n g l e command, r e l i e v i n g t he user of much r e p e t i t i v e
t y p i n g ; y e t run- t ime d e c i s i o n s can be made a t any time dur ing the
f i l e ' s e x e c u t i o n .

December 1980

SECTION 8 PDR4130

1. CPL file contains
the statement: IF %A%>%B% THEN F77 %FILENAME%

2. The CPL interpreter
reads the statement,
substituting current
values for variable
references: IF 3>1 THEN F77 JEFF

3. The CPL interpreter
tests: 3>1? TRUE

4. Since the t e s t cond i t ion
i s t r u e , CPL executes
the THEN s t a t e m e n t ,
passing t he command
"F77 JEFF" to the
Standard Command Processor THEN F77 JEFF

5. Command processor executes
the command: F77 JEFF

Figure 8-1. Execution of a Sample CPL Directive

REV. 0

PDR4130 THE BASICS OF CPL

CREATING AND EXECUTING CPL PROGRAMS

Like o the r h i g h - l e v e l language programs, CPL programs a r e w r i t t e n using
the e d i t o r (ED). Their format i s s imp le , being based on t he p r i n c i p l e
of one s ta tement per l i n e . Inden ta t ion may be used a s d e s i r e d , for
ease of r e a d i n g . (Format r u l e s a r e expla ined where a p p l i c a b l e
throughout t h i s s e c t i o n . They a r e explained f u l l y in Sect ion 3 of The
CPL User ' s Guide.)

CPL programs must be g iven names t h a t end with t he .CPL s u f f i x .

CPL programs a r e no t compiled or loaded . As soon a s t hey have been
w r i t t e n , they a r e ready to e x e c u t e .

You may run CPL programs i n t e r a c t i v e l y with e i t h e r the CPL command or
the RESUME command. You may a l s o run them a s phantoms (with the
PHANTOM command) , or a s Batch jobs (with the JOB command) . For d e t a i l s
of how to run CPL programs as Batch j o b s , see Sect ion 10.

You do not need to s p e c i f y t h e .CPL su f f ix when you submit a CPL
program for execu t i on . The CPL, RESUME, JOB, and PHANTOM commands w i l l
a l l look for filename.CPL when you spec i fy f i l ename . Their sea rch
r u l e s a re a s fo l lows :

• The CPL command looks f i r s t for filename.CPL, then for f i l ename .
I t runs e i t h e r one a s a CPL program.

• The RESUME command looks f i r s t for filename.SAVE, then for
filename.CPL, then for f i lename. I t runs f i l e s whose names end
in CPL as CPL programs. I t runs a l l o the r f i l e s a s run- t ime
(compiled and loaded) programs.

• The PHANTOM and JOB commands look f i r s t for f i lename.CPL, then
for f i l ename. They run f i l e s whose names end in .CPL as CPL
programs; they run o the r f i l e s a s command input f i l e s .

DEBUGGING CPL PROGRAMS

Syntax Error

If syntax e r r o r s p reven t a CPL program from e x e c u t i n g , the i n t e r p r e t e r
p r i n t s a s u b s t a n t i a l amount of informat ion a t t h e u s e r ' s t e rmina l
and/or in to a COMOUTPUT f i l e . (For d e t a i l s on COMOUTPUT f i l e s , see
Section 9.) The informat ion i n c l u d e s :

• A l i n e of t e x t g iv ing the CPL e r r o r number and the l i n e number
in the CPL program a t which the e r r o r occu r r ed .

• A f u l l e r r o r message. If t he e r r o r - c a u s i n g t e x t can be p r i n t e d ,
i t w i l l be p a r t of the message.

• The t e x t of the l i n e of source code in which t he e r r o r o c c u r r e d .

8 - 3 December 1980

SECTION 8 PDR4130

• A line describing the action taken by the CPL interpreter and
giving the name of the program in which the error occurred. For
example:

OK, r blunder

CPL ERROR 40 ON LINE 2.
A re fe rence to the undefined v a r i a b l e "FILLNAME" has been found
in t h i s s t a t emen t .

SOURCE: como %fillname%.como

Execution of procedure t e rmina ted . BLUNDER (cpl)
ERJ

In t h i s example, program BLUNDER.CPL conta ined a m i s p r i n t , FILLNAME,
for t he v a r i a b l e , FILENAME.

If CPL programs a r e ha l ted by PRIMOS e r r o r s , then t he normal PRIMOS
e r r o r message (ending in "ER1") i s p r in ted o u t .

Note

Ei ther CPL or PRIMOS syntax e r r o r s h a l t t he CPL program and
r e t u r n the user to command l e v e l . Fbwever, warning messages
from PRIMOS or i t s subsystems w i l l not normally h a l t execut ion
of a CPL program.

CPL's &SEVERITY d i r e c t i v e (explained in The CPL Use r ' s Guide)
a l lows u s e r s t o modify a program's response to PRIMOS e r r o r s
and warnings .

Logic Errors

If a CPL program r u n s , bu t produces erroneous r e s u l t s , you can use the
f a c i l i t i e s provided by CPL's &DEBUG d i r e c t i v e to t r a c k down the e r r o r s .
CPL's debugging f a c i l i t i e s o f f e r :

• v a r i a b l e watching, to p r i n t ou t the va lue of a v a r i a b l e each
time the va lue i s s e t or a l t e r e d .

• echoing , to p r i n t commands and d i r e c t i v e s a s they a r e r e a d .
(This can t e l l you i f unexpected branching i s o c c u r r i n g .)

• a no-execute o p t i o n , to al low the i n t e r p r e t e r to "walk through"
t he CPL program without a c t u a l l y execut ing any of t h e commands
i t c o n t a i n s .

For fu l l d e t a i l s on debugging, see Section 10 of The CPL Use r ' s Guide.

REV. 0

PDR4130 THE BASICS OF CPL

USING PRIMOS COMMANDS IN CPL PROGRAMS

The s i m p l e s t CPL p r o g r a m s a r e composed e n t i r e l y o f PRIMOS commands.
For e x a m p l e , a CPL f i l e m i g h t e x e c u t e t h r e e p r o g r a m s . Such a p rogram
m i g h t be named RUNNEM.CPL. I t m i g h t l o o k l i k e t h i s :

RESUME NEW_TALLY
RESUME NEW_SORT
SEG DAILY UPDATE

Which PRIMOS Commands Can you Use?

CPL f i l e s t h a t c o n s i s t e n t i r e l y o f PRIMOS commands c a n u s e t h e
f o l l o w i n g commands:

• Al l c o m p i l e r commands: COBOL, F77 , FTN, PL1G, PMA, RPG, e t c .

• A l l commands which e x e c u t e p r o g r a m s . For e x a m p l e :

SEG THISFILE.SEG
R THATFILE.SAVE
R FILE.CPL
BASICV ANYFILE

• Any u s e r commands which do n o t i nvoke a s u b s y s t e m o r i n i t i a t e a
d i a l o g . For e x a m p l e , you may u s e :

ATTACH
LISTF
CREATE
DELETE
CNAME
PASSWD
PROTEC
SIZE

• Commands t h a t i n v o k e i n t e r a c t i v e s u b s y s t e m s o r u s e r p r o g r a m s , i f
t h e u s e r i s g o i n g t o s u p p l y t h e d a t a o r subcommands from t h e
t e r m i n a l a t r u n t i m e . For e x a m p l e :

ED
SEG
MAGNET
SORT

December 1980

SECTION 8 PDR4130

If you want the CPL program i t s e l f t o supply t he d a t a or
subcommands, you must use CPL's &DATA d i r e c t i v e , expla ined l a t e r
in t h i s s e c t i o n .

What Commands Can ' t You Use?

Do no t use the commands

• COMINPUT (in any form)
• CLOSE ALL
• DELSEG ALL

in a CPL f i l e . Any of t he se commands w i l l abo r t execut ion of t h e f i l e .

CPL DIRECTIVES

The CPL langauge c o n t a i n s the following d i r e c t i v e s . Those marked with
a s t e r i s k s a r e d iscussed in the remainder of t h i s s e c t i o n . All a r e
d iscussed in d e t a i l in The CPL User ' s Guide.

D i r ec t i ve Use

VARIABLE- AND ARGUMENT-HANDLING DIRECTIVES

* &ARGS

* &SET VAR

Defines names (plus types and d e f a u l t v a l u e s ,
i f des i red) for arguments to be passed to the
CPL program from the command l i n e t h a t
executes the program.

Defines a v a r i a b l e and s e t s i t s v a l u e ; o r ,
a l t e r s the va lue of an e x i s t i n g v a r i a b l e .

BRANCHING DIRECTIVES

* &IF...&THEN...&ELSE

& SELECT

* &DO...&END

Allows conditional branching, choosing
between Boolean (TRUE-FALSE) alternatives.

Allows conditional branching among a
of specified alternatives.

number

Groups s ta tements to be t r e a t e d a s a s i n g l e
u n i t s y n t a c t i c a l l y . (For example, a "DO
GROUP" may r e p r e s e n t the a c t i o n to be taken
by a &THEN or &ELSE d i r e c t i v e .)

REV.

PDR4130 THE BASICS OF CPL

&DO i t e r a t i o n . . . S E N D

* &DATA. ..&END

Allows c o n d i t i o n a l i t e r a t i o n (t h a t i s ,
repeated execut ion) of a group of s t a t e m e n t s .
CPL suppor t s counted l o o p s , &WHILE, &UNTIL,
and &REPEAT l o o p s . I t a l s o has two types of
loops t h a t t ake advantage of CPL's "wild
ca rd" c a p a b i l i t i e s .

Groups s t a tements to be t r e a t e d a s da ta or
subcommands for user programs or PRIMOS
u t i l i t i e s (such as ED or FUTIL) .

&GOTO...&LABEL &GOTO forces an uncondi t iona l branch to the
s ta tement immediately fol lowing t h e &LABEL
d i r e c t i v e .

* &RETURN Halts execution of program or routine and
returns control to user or calling program.
The CPL interpreter puts an implicit & RETURN
statement at the end of each CPL program.
The &RETURN directive can also pass messages
and/or integer severity codes to the user or
caller of the halted program or routine.

&STOP Halts execution of a CPL program, whether it
is used in the main program or in an internal
routine. The &STOP directive can also pass
messages and/or integer severity codes to its
program's caller.

SUBROUTINES AND USER-DEFINED FUNCTIONS
^INTERNAL AND EXTERNAL PROCEDURES)

&CALL Cal l s (t r a n s f e r s c o n t r o l to) an
r o u t i n e .

i n t e r n a l

&ROUTINE

&RESULT

Defines and names an i n t e r n a l r o u t i n e .

Allows a CPL program to s e rve a s a
user -def ined funct ion for o t h e r CPL programs.

EXECUTION-CONTROL DIRECTIVES

&DEBUG Turns on (or off) CPL's debugging f a c i l i t y
dur ing program execu t ion . Options to t h e s e
d i r e c t i v e s spec i fy debugging a c t i o n s to be
t a k e n .

&EXPAND Allows use of spec i f i ed ABBREV f i l e by the
CPL program. (For d e t a i l s on ABBREV f i l e s ,
see Sect ion 15.)

December 1980

SECTION 8 PDR4130

& SEVERITY Defines the behavior of t he CPL program
(s t o p , c o n t i n u e , or c a l l an e r r o r - h a n d l i n g
rou t ine) when system-defined e r r o r s o r
warnings occur .

ERROR- AND CONDITION-HANDLING DIRECTIVES

&CHECK...&ROUTINE Checks for user -def ined e r r o r c o n d i t i o n s .
Defines an i n t e r n a l r o u t i n e to a c t a s
e r ro r -hand l e r i f t he e r r o r o c c u r s .

& ON.. .& ROUTINE Defines a r ou t i ne to a c t a s a c o n d i t i o n
handler for a CPL program or r o u t i n e . (See
Sect ion 16 for informat ion on c o n d i t i o n s and
on PRIMOS's Condition Mechanism.)

&REVERT Disables a spec i f i ed c o n d i t i o n h a n d l e r .

&SIGNAL Signals a user -def ined (or system-defined)
cond i t ion to the c o n d i t i o n mechanism.

USING VARIABLES IN CPL PROGRAMS

There a r e t h r e e ways in which CPL programs can o b t a i n v a r i a b l e d a t a :

• The v a r i a b l e da ta can be passed to t he CPL programs a s arguments
when the CPL program i s invoked. In t h i s c a s e , t h e &ARGS
d i r e c t i v e i s used ins ide the CPL program to de f ine
var iable-names for the arguments and t o match these names to the
da t a suppl ied in the invoca t ion .

• Var iab les may be defined and ass igned va lues i n s i d e the CPL
program by using the &SET_VAR d i r e c t i v e .

• A user can mainta in a g loba l v a r i a b l e f i l e . (See Sect ion 15 for
d e t a i l s .) By using the command "DEFINE_GVAR fi lename" in a CPL
program, the user • al lows the program to access t h a t f i l e and
re fe rence t he v a r i a b l e s contained in i t .

Once a v a r i a b l e has been defined in a CPL program (by the &ARGS or
&SET_VAR d i r e c t i v e s , or by the DEFINE_GVAR command) , i t may be
referenced by p lac ing i t s name ins ide percent s i g n s . Thus, i f NAME was
the name of t he v a r i a b l e , %NAME% would be a r e fe rence to t h a t v a r i a b l e .
When the CPL i n t e r p r e t e r read the r e f e r e n c e , i t would s u b s t i t u t e t he
c u r r e n t va lue of NAME for the s t r i n g %NAME% in t h e command l i n e or
d i r e c t i v e in which the re fe rence occur red .

REV. 0

PDR4130 THE BASICS OF CPL

Using t he &ARGS Di rec t ive

The s imples t form of t h e &ARGS d i r e c t i v e i s :

&ARGS v a r i a b l e name [; . . . v a r i a b l e name]

For example, a CPL program (named F7.CPL) t h a t compiles any F77 source
f i l e might r e ad :

SeARGS FILENAME
COMO %FILENAME%.COM0
DATE
F77 %FILENAME% -DEBUG
COMO -E

In t h i s example, the &ARGS d i r e c t i v e d e f i n e s one v a r i a b l e , FILENAME.
When the f i l e i s invoked, t he name of the f i l e to be compiled i s
suppl ied a s an argument, following t he name of t h e CPL f i l e . For
example, the invoca t ion might r ead :

R F7 JEFF

In this example, the &ARGS directive takes the character string JEFF
and assigns it to the variable FILENAME. JEFF is now the value of
FILENAME.

From now on, each time a variable reference, %FILENAME%, is found, the
CPL interpreter substitutes the character string JEFF for the character
string %FILENAME%. Thus, the command:

COMO %FILENAME%.CCMO

becomes

COMO JEFF.COMO,

while the command

F77 %FILENAME% -DEBUG

becomes

F77 JEFF -DEBUG.

Note that the variable, FILENAME, is not enclosed in percent signs when
it is being defined in the &ARGS directive, but is enclosed in percent
signs whenever it is "referenced"—that is, whenever its value, rather
than its name, is wanted.

December 1980

SECTION 8 PDR4130

Note

When a variable reference is juxtaposed to another character
string, with no blanks between them (as in %FILENAME%.CCMO) ,
the value of the variable is concatenated with the other
string, (as in JEFF.COMO) . Two or more variable references may
also be juxtaposed, (as in %FILENAME%%FILENAME%). Again, a
single string results (JEFFJEFF) .

Multiple Arguments

when multiple arguments are given, the variable names in the &ARGS
directive must be separated by semicolons. For example:

&ARGS FILENAME; COMPILER

Now you can w r i t e a more genera l CPL f i l e , c a l l e d CCMPILE_ALL.CPL, t h a t
can compile FTN, F77, or PL1G source f i l e s . I t r e a d s :

&ARGS FILENAME; COMPILER
COMO %FILENAME%.COMO
DATE
%COMPILER% %FILENAME% -64V -DEBUG

COMO -E

Invoking this file by typing:

R COMPILE_ALL JEFF FTN

creates the command,

FTN JEFF -64V -DEBUG

In general, arguments are defined by their position in the command
line. In the above example, the first argument, "JEFF", became the
value of the first variable in the &ARGS line, "FILENAME". The second
argument, "FTN", was assigned to the second variable, "COMPILER".
Giving the arguments in reverse order:

R COMPILE_ALL FTN JEFF

would assign "FTN" to "FILENAME" and "JEFF" to "COMPILER".

emitted Arguments

If an argument is omitted from the command line, the CPL interpreter
sets its value to the explicit null string, ". The PRIMOS command
processor then removes the null string before executing the command.
In the above example, the command:

R COMPILE ALL TESTFILE

REV., 0 8 - 1 0

PDR4130 THE BASICS OF CPL

assigns the value TESTFILE to the variable FILENAME, and assigns the
null string to the variable. COMPILER. The resulting PRIMOS command
first becomes:

1• TESTFILE -64V -DEBUG

and then becomes:

TESTFILE -64V -DEB'UG

Since PRIMOS can do nothing worthwhile with such a command, i t r e t u r n s
you to command l e v e l with no compi la t ion having o c c u r r e d .

Note

CPL o f f e r s s e v e r a l ways to dea l with n u l l a rguments . These a r e
explained in The CPL Use r ' s Guide.

The &SET VAR Di rec t i ve

'The form of t h e &SET_VAR d i r e c t i v e i s

&SET_VAR name j = va lue

For example:

&SET_VAR A := AMY

de f ine s the v a r i a b l e A and g i v e s i t the va lue AMY.

va lue may a l s o be an e x p r e s s i o n . For example:

&SETVAR X := 10
&SET_VAR Y := 5
&SET_VAR Z := %x% + %y%

These t h r e e d i r e c t i v e s de f ine the v a r i a b l e s X, Y, and Z. X has the
va lue of 10, Y the va lue of 5, and Z the va lue of 15.

Note

In CPL programs, a l l o p e r a t o r s MUST be separa ted from t h e i r
operands by one or more s p a c e s .

DECISION-MAKING (BRANCHING) IN CPL PROGRAMS

When a CPL program c o n t a i n s only PRIMOS commands (or PRIMOS commands
p lus v a r i a b l e s) , i t i s executed s e q u e n t i a l l y ; t h a t i s , each command
(each l i n e of the program) i s executed in t u r n .

- 11 December 1980

SECTION 8 PDR4130

Sometimes, however, you may want to alter the sequence in which the
commands are executed. To alter the "flow of control" in this way, you
use CPL's flow of control directives. The simplest and most important
of these is the &IF directive.

The &IF Directive

The form of the &IF directive is:

&IF test &THEN statement

Test is a logical test which can be answered TRUE or FALSE (for
example, &IF A = B, &IF %NUMBER% < 10) . Statement is either a command
or a CPL directive.

Test may test variables, constants, functions or expressions against
each other. For example:

&IF %A% = 10 (variable and constant)
&IF %A% < %B% (two variables)
&IF %A% < %B% + %C% (variable and expression)
&IF %A% + %B% = %D% + 30 (two expressions)
&IF [LENGTH %A%] < 100 (function and constant)

How the &IF Directive Works: When the CPL interpreter reads an &IF
directive, it substitutes current values for any variable references,
expressions, or function calls it finds. Then it tests to see if test
is true or false. If test is true, the interpreter executes the
command or directive that forms the &THEN statement.

An example: Suppose you compile a program frequently, but only
occasionally want to spool the listing file. You could use an argument
and the &IF directive to tell the CPL program whether or not to spool
the listing file. Here's a program to do it (called CNS.CPL):

Note

As t h i s program shows, you can use / * to p lace comments in CPL
programs.

&DEBUG &ECHO COM
/*Th i s program compiles and o p t i o n a l l y spoo l s
/*an F77 program.
/*Give t h e argument "SP" to spool t h e l i s t i n g f i l e .

&ARGS FILENAME; SP
/*Open the COMOUTPUT f i l e and compile the program

COMO %FILENAME%.CCMO
DATE
F77 %FILENAME% -L %FILENAME%.LIST -XREF

/ * I f d e s i r e d , spool i t .
&IF %SP% = SP &THEN SPOOL %FILENAME%.LIST -AT MS3
COMO -E

REV. 0 8 - 1 2

PDR4130 THE BASICS OF CPL

If you g i v e the command

R CNS JEFF SP

then the test, SP = SP, is true, and the listing file, JEFF.LIST, is
spooled. If you give the command

R CNS JEFF

the t e s t i s f a l s e (the n u l l s t r i n g does not equal "SP") . In t h i s c a s e ,
the l i s t i n g f i l e i s no t spooled . I n s t ead , t he CPL i n t e r p r e t e r ignores
the &THEN s t a t e m e n t , and passes on to the next l i n e in the program (in
t h i s c a s e , "COMO - E ") .

The &ELSE D i r e c t i v e

The &IF d i r e c t i v e may be used by i t s e l f , as in t he example above; or
i t may be followed by t h e &ELSE d i r e c t i v e . When used by i t s e l f , &IF
t e l l s t h e i n t e r p r e t e r e i t h e r to execute or to ignore some s t a t e m e n t .
(In the example, spool the f i l e , or d o n ' t spool i t .) When t h e &IF and
&ELSE d i r e c t i v e s a r e used t o g e t h e r , they t e l l t he i n t e r p r e t e r t o choose
between two cou r se s of a c t i o n .

The form of t he pa i red d i r e c t i v e s i s :

&IF t e s t &THEN s t a t e m e n t - 1
&ELSE s t a t e m e n t - 2

If t e s t i s TRUE, s t a t e m e n t - 1 i s execu ted . If t e s t i s f a l s e ,
s t a t emen t -2 i s execu ted . For example, suppose you compile many FTN
f i l e s and a few F77 f i l e s . You might want a program (ca l l ed
COMPILE2.CPL) t h a t looked l i k e t h i s :

&ARGS FILENAME; COMPILER
& IF %CQMPILER% = F77 &THEN F77 %FILENAME% -DEBUG -321
&ELSE FTN %FILENAME% -64V

If you g i v e t h e command "R COMPILE2 THISFILE F77", the t e s t (F77 = F77)
becomes t r u e , and THISFILE i s compiled by the F77 compi l e r . If you
g ive any o t h e r va lue for t he "compiler" argument—or i f you omit t h a t
argument altogether—THISFILE i s compiled by t he FTN compi l e r .

Nested &IFs

&IF d i r e c t i v e s may be n e s t e d : t h a t i s , e i t h e r the &THEN or the &ELSE
a c t i o n of one &IF d i r e c t i v e may be another &IF d i r e c t i v e . Nested &IF
s t a t ement s a r e d i scussed in The CPL Use r ' s Guide.

13 December 1980

SECTION 8 PDR4130

&DO GROUPS

In the examples above, the &THEN and &ELSE d i r e c t i v e s execute s i n g l e
commands. These d i r e c t i v e s may a l so execute groups of commands, by
using the &D0 and &END d i r e c t i v e s to mark t he beginning and end of the
command g roups .

&D0 Groups

The format for & DO groups i s a s fo l lows :

&D0
s ta tement 1
s ta tement 2

s ta tement n
SEND

Normally, each s ta tement in a CPL program r e p r e s e n t s one a c t i o n the
i n t e r p r e t e r i s asked t o perform. In a &D0 g roup , however, a l l t h e
s t a tements between the &D0 and the &END r e p r e s e n t a s i n g l e a c t i o n to
the i n t e r p r e t e r . Thus ins tead of saying

&IF t e s t &THEN s t a t emen t -1
&ELSE s t a t emen t -2

we can say

&IF t e s t &THEN &D0
f i r s t - g r o u p - o f - s t a t e m e n t s
&END
&ELSE &D0
second-group-o f - s ta tements
&END

For example:

&ARGS %MONTH%
&IF %MONTH% = DEC &THEN &D0

SEG MONTHLY_REPORT
SEG END_OF_YEAR_REPORT
SEG XMAS_LIST
&END

&ELSE SEG MONTHLY REPORT

REV. 0 8 - 1 4

PDR4130 THE BASICS OF CPL

USING FUNCTIONS IN CPL PROGRAMS

Like o t h e r h i g h - l e v e l l anguages , CPL prov ides b u i l t - i n func t ions to
s impl i fy f r equen t ly made t e s t s and computa t ions . Funct ions appear in
CPL f i l e s in the form of funct ion c a l l s ; t h a t i s , f unc t ions and t h e i r
arguments enclosed in square b r a c k e t s ([FUNCTION a r g]) . When a
funct ion c a l l appears in a command or d i r e c t i v e , t he CPL i n t e r p r e t e r
performs t he r equ i red t e s t or computa t ion , and s u b s t i t u t e s t he
c h a r a c t e r s t r i n g thus produced for the c h a r a c t e r s t r i n g r ep re sen t ed by
the funct ion c a l l .

The NULL func t i on : One of the most useful CPL func t ions i s t he NULL
func t ion . I t s form i s

[NULL var]

where var is any CPL variable.

The NULL function tests for a null character string, returning the
character string TRUE if it finds one and the character string FALSE if
it does not. Since the value of an omitted argument is the null
string, the NULL function can be used in &IF directives to test for an
omitted argument.

An example: A test for a null argument might be used to set the home
UFD for some procedure. For example, a CPL program might begin

&ARGS WHERE
IF [NULL %WHERE%] &THEN ATTACH MYJJFD

&ELSE ATTACH %WHERE%

Specifying WHERE al lows you to make any des i r ed ATTACH; omi t t ing WHERE
a t t a c h e s you to your d e f a u l t cho ice (MY UFD) .

The EXISTS Function

The EXISTS funct ion i s a Boolean funct ion t h a t de te rmines

• Whether or not a f i l e system object ex i s t s

• Whether i t matches a specified type (f i l e , d i r ec to ry , or segment
directory)

The form of the function c a l l i s :

[EXISTS pathname [type]]_

pathname i s the name or pathname of a f i l e or d i rec to ry .

- 15 December 1980

SECTION & PDR4130

type is one of the following:

-ANY
-FILE
-DIRECTORY or -DIR
-SEGMENT_DIRECTORY or -SEGDIR

If type i s p r e s e n t , then the EXISTS funct ion r e t u r n s t he va lue TRUE i f
pathname does e x i s t and i s of the r i g h t t y p e . I t r e t u r n s the va lue
FALSE i f pathname does not e x i s t or i f i t i s of the wrong t y p e . If
type i s not p r e s e n t , the EXISTS funct ion merely r e p o r t s on the
e x i s t e n c e or non-ex i s t ence of pathname.

Examples: The f i r s t example checks to see i f a "new" f i l e has been
w r i t t e n . If i t h a s , i t c a l l s ED to a l low i t s user to e d i t t he new
f i l e . If t he new f i l e does not e x i s t , the program r e q u e s t s the o lde r
v e r s i o n :

&IF [EXISTS MEMO.NEW] &THEN ED MEMO.NEW
&ELSE ED MEMO

The second example uses the "NOT" symbol, ~ , t o r e v e r s e the va lue
re turned by EXISTS. This program wants to a t t a c h to a s p e c i f i c
d i r e c t o r y . If t he d i r e c t o r y d o e s n ' t e x i s t , i t w i l l c r e a t e i t before
doing the ATTACH:

SIF ~ [EXISTS SUBDIR] &THEN CREATE SUBDIR
ATTACH *>SUBDIR

USING CPL WITH SUBSYSTEMS: &DATA GROUPS

Many of Pr ime's u t i l i t i e s , such a s ED (the t e x t e d i t o r) and SEG (the
V-mode and I-mode loader) , r e q u i r e subcommands to accomplish t h e i r
func t ion . S i m i l a r l y , many user programs r e q u i r e t h a t da t a be typed in
from the t e r m i n a l . CPL's &DATA d i r e c t i v e a l lows CPL programs to supply
t he da t a or subcommands needed by these programs and u t i l i t i e s .

&DATA groups resemble &D0 groups in t h a t both a r e groups of s t a t ement s
s e t off by an opening d i r e c t i v e (&D0, &DATA) , and a c l o s i n g &END. In
each c a s e , the s t a t ement s wi th in the group a r e t r e a t e d a s a u n i t .

The form of t he &DATA group i s :

&DATA command
S ta t emen t - !
Statement-2

Statement-n
&END

REV. 0 8 - 1 6

PDR4130 THE BASICS OF CPL

Command i s the command t h a t invokes the subsystem or u t i l i t y ; for
example: "&DATA ED f i l ename" .

Statement 1 through s t a t emen t -n r e p r e s e n t t he commands o r d a t a to be
passed to the subsystem or user program. As with a l l CPL s t a t e m e n t s ,
they may inc lude v a r i a b l e s , funct ion c a l l s , and d i r e c t i v e s .

The SEND s t a t e m e n t , on a l i n e by i t s e l f , ends the &DATA g r o u p .

Here i s an example of a CPL program t h a t compi les , l o a d s , and execu tes
a PL/I-G program:

/*CPL program to compi le , l o a d , and execute a PL1G program
/ * u s a g e : R CLR FILENAME
/ *
PL1G %FILENAME% /*Compile program
/ *
&DATA SEG -LOAD /*Invoke SEG

LOAD %FILENAME% /*Provide SEG commands
LI PL1GLB / * v i a &data d i r e c t i v e s
LI
SA
QU

&END /*end of &data group
SEG %FILENAME%.SEG /*execu te r u n - f i l e

Terminal Input in &DATA Groups

Sometimes you may want a CPL f i l e to invoke a subsystem or user
program, g ive a few subcommands from wi th in the CPL f i l e , and then
a l low you to g ive fu r the r commands from your t e r m i n a l . You do t h i s by
inc luding CPL's &TTY d i r e c t i v e a t t he end of t he &DATA g roup , j u s t
before the &END s t a t e m e n t .

The format i s :

&DATA
statement-1

statement-n
&TTY
&END

When execution reaches the &TTY directive, control returns to the user
at the terminal. When the user leaves the subsystem, control returns
to the CPL file.

- 17 December 1980

SECTION 8 PDR4130

An Example

This example shows how the &TTY d i r e c t i v e might work with a user
program. Assume a ^program (named PURCHASE) t h a t a sks for f ive i tems of
information about a customer purchase :

Dept. name:
Dept. number:
Customer name:
Acct . number:
Amount of purchase :

A given department (for i n s t a n c e , the hardware department) might use a
CPL program (named P.CPL) to invoke the PURCHASE program and pass i t
i t s f i r s t two items of informat ion . The s t a t emen t s would look l i k e
t h i s :

&DATA R PURCHASE
HEWR
38

&TTY
&END

The example a s shown could be a complete CPL program. Or, i t might be
p a r t of a l a r g e r program.

A te rmina l s e s s ion might look l i k e t h i s :

OK, R P
d e p t . name: HEWR
d e p t . number: 38
customer name: H.L. Smith
a c c t . number: 35684
amount of purchase : 536.89
OK,

Note

By using a loop and the RESPONSE func t ion , you could w r i t e a
CPL program t h a t would pass information for any number of
purchases to program PURCHASE. The CPL Use r ' s Guide e x p l a i n s
how to do t h i s .

HOW CPL PROGRAMS END: THE & RETURN DIRECTIVE

Every CPL program ends with the d i r e c t i v e &RETURN. You may e i t h e r
supply t h i s d i r e c t i v e a s the l a s t l i n e of the CPL f i l e or may a l low the
CPL i n t e r p r e t e r to add the d i r e c t i v e a t the f i l e ' s end.

REV. 0 8 - 1 8

PDR4130 THE BASICS OF CPL

You may a l s o use t h e &RETURN d i r e c t i v e to s t o p the program before the
end of t he f i l e . For example:

&ARGS A

&IF %A% > 20 &THEN &RETURN
&ELSE &D0

&END
&RETURN

- 19 December 1980

PDR4130 COMMAND FILES AND PHANTOMS

SECTION 9

COMMAND FILES AND PHANTOMS

INTRODUCTION

This section discusses:

• How to create and run COMINPUT files

• How to create COMOUTPUT files

• How to use DATE, TIME, and RDY in command files

• How to run phantoms

Batch execution of command files will be discussed in Section 10.

COMMAND FILE REQUIREMENTS

Command input files may contain any legal PRIMOS commands, utility
subcommands, or dialog responses, on a line-for-line basis (i.e., each
line in the file must correspond to a line as it would be typed at a
terminal.) Each utility except Batch imposes certain requirements:

• For COMINPUT, the last command should be COMINPUT -TTY or
COMINPUT -END.

• For PHANTOM, the last command should be LOGOUT.

• Any command file can be used for Batch.

Comments

Command input files can be made self-documenting by including comment
lines at PRIMOS command level. A line beginning with a slash and
asterisk, (/*), is interpreted as a comment and is ignored by PRIMOS.
If a command output file is open, any comments entered at the terminal
by the user or from a command file are written into the command output
file. Any character may be used in a comment line. A comment may also
be appended to a command at PRIMOS command level as in:

SLIST BENCH07.MAP /* PRINT MAP FILE

December 1980

SECTION 9 PDR4130

THE COMINPUT COMMAND

The COMINPUT command causes PRIMOS to read input from a s p e c i f i e d
command f i l e r a t h e r than from the t e r m i n a l . Commands a r e executed a s
if they were entered a t the terminal. The format i s :

COMINPUT [command-file] [-options] [f i l e -uni t]

command-file The pathname of the f i l e from which input i s to
be read.

options Specify command control flow as deta i led below.

f i l e -un i t Tne PRIMOS f i l e unit number on which the input
f i l e i s to be opened. If omitted, f i l e uni t 6
i s used. File uni ts must be oc ta l (i . e . ,
decimal 8 i s entered as 10) .

Options

-TTY Either one switches the command input stream to the
-END user terminal and closes the command input file.

-PAUSE Switches command input stream to the user terminal
but does not close the command input file.

-CONTINUE Returns control to command input file following a
CO -PAUSE or an error.

-START Resumes command following a BREAK interruption of
execution of a command file.

The -TTY, -END and -PAUSE options are used only within command files.
The -CONTINUE and -START options are typed by the user.

The -TTY or -END option must be the final command in the command file
(or in the last command file, if files are chained as described,below) .

A simple command file, TEST.CO, might be created to compile the program
TEST.FTN:

/*BEGIN TEST OF COMMAND FILE
COMOUTPUT TEST.COMO
DATE
/*COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
/*LOAD THE PROGRAM
SEG -LOAD
LO TEST
LI
SA

REV. 0

PDR4130 COMMAND FILES AND PHANTOMS

MAP LOADTEST.MAP 7
MAP UNSATISFIED.MAP 3
QU
/*COMMAND FILE TEST COMPLETED
DATE
CCMO -END

The command file would be executed by the command:

CO TEST.CO

and would produce the following output file:

OK, DATE

T h u r s d a y , November 2 0 , 1980 4 :04 PM

OK, /*COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
0000 ERRORS [<.MAIN.>FTN-REV18.1]

OK, /*LOAD THE PROGRAM
SEG -LOAD
[SEG r e v 18 .1]
$ LO TEST
$ LI
LOAD COMPLETE
$ SA
$ MAP LOADTEST.MAP 7
$ MAP UNSATISFIED.MAP 3
$ QU

OK, /*COMMAND FILE TEST COMPLETED
DATE

Thursday, November 20, 1980 4:05 PM

OK, CCMO -END

Chaining Command Files

The -CONTINUE option of COMINPUT allows command files to be chained.
The following example illustrates the chaining of three command files,
and shows how file unit conflicts can be avoided. The command file
GO.CO contains the following commands:

/* COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
/* LOAD THE PROGRAM
COMINPUT LOADTEST.CO 7
CLOSE 7

December 1980

SECTION 9 PDR4130

/* RETURN COMMAND TO USER TERMINAL
CQMINPUT -TTY

The command file LOADTEST.CO contains the following commands:

/* LOADTEST COMMAND FILE
SEG -LOAD
LO TEST
LI
SA
QU
COMINPUT MAPS.CO 10
CLOSE 10

CQMINPUT -CONTINUE

The command file MAPS.CO contains the fc "'owino mmands:

/* GET FULL MAP AND UNSATISFIED REFERENCES
SEG
VLOAD * TEST
MAP LOADTEST.MAP 7
MAP UNSATISFIED.MAP 3
QU
/* RETURN TO 'CALLING' COMMAND FILE
CQMINPUT -CONTINUE 7

Typing COMINPUT GO.CO causes PRIMOS to read and execute the commands in
GO.CO. When the command COMINPUT LOADTEST.CO 7 is reached, control
passes to LOADTEST.CO, which loads the object file, then calls MAPS.CO
(on file unit '10) to obtain two load maps. When the command CQMINPUT
-CONTINUE is reached in MAPS.CO, control returns to the statement
following the call in LOADTEST.CO, which closes the file unit used for
MAPS.CO. When COMINPUT -CONTINUE is reached in LOADTEST.CO, control
similarly returns to GO.CO. Finally, the command COMINPUT -TTY in
GO.CO returns control to the user's terminal.

OK, CO GO.CO
OK, /*COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
0000 ERRORS [<.MAIN.>FTN-REV18.1]

OK, /*LOAD THE PROGRAM
COMINPUT LOADTEST.CO 7
OK, /*LOADTEST COMMAND FILE
SEG -LOAD
[SEG r e v 18 .1]
$ LO TEST
$ LI
LOAD COMPLETE
$ SA
$ QU

REV. 0

PDR4130 COMMAND FILES AND PHANTOMS

OK, COMINPUT MAPS.CO 10
OK, /*GET FULL MAP AND UNSATISFIED REFERENCES
SEG
[SEG rev 18.1]
#VLOAD * TEST
$ MAP LOADTEST.MAP 7
$ MAP UNSATISFIED.MAP 3
$ QU

OK, /*RETURN TO 'CALLING' COMMAND FILE
COMINPUT -CONTINUE 7
OK, CLOSE 10
OK, COMINPUT -CONTINUE
OK, CLOSE 7
OK, /*RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY
OK,

Errors

Non-recoverable errors return input control to the terminal, leaving
the command file open. The user may type a correct version of the
offending line, and then resume input from the command file by the
command CO -CONTINUE.

Closing Command Input Files

In chaining command files, the 'called' files should be closed upon
returning to the 'calling' files, either by file unit number (as in the
example above) or by filename. The user should make certain that the
file units to be used for the command input files are not already
opened (or going to be opened) by user programs, utilities, or other
command input files.

Note

The CLOSE ALL command should not be used in a command input
file, as it closes all files, including the command input file
from which this command is read. The message "Unit not open.
Cominput (Input from terminal.)" will be printed and input
control will be switched to the terminal.

THE COMOUTPUT COMMAND

The COMOUTPUT command writes, into a specified file, both the output
stream directed to the terminal by PRIMOS and the input presented to
PRIMOS. The input may originate as direct typing, or come from a
command file running under COMINPUT, PHANTOM or Batch. The resulting
output file is a permanent record of the entire dialog.

December 1980

SECTION 9 PDR4130

Output to the t e rmina l can be suppressed. P r i n t suppress ion i n c r e a s e s
speed s ince i t normally t akes more time to w r i t e to a t e rmina l than to
a d i sk f i l e .

The command format i s :

COMOUTPUT [o u t p u t - f i l e] [-options]

o u t p u t - f i l e i s the pathname of the f i l e to which t he ou tpu t s t ream i s
s e n t , op t ions spec i fy te rminal and f i l e output and c o n t r o l flow a s
descr ibed below.

Terminal Options

These can be used when the output f i l e i s f i r s t opened, or a t any t ime
before t he command outpu t f i l e i s c l o s e d . User inpu t i s always echoed
a t t he te rminal even i f t he -NTTY op t ion i s used.

-NTTY Turn off te rminal o u t p u t .

-TTY Turn on terminal output (defaul t) .

Error messages a r e p r in t ed in the output f i l e and a t the t e r m i n a l ,
r e g a r d l e s s of t h e te rmina l op t ion s e l e c t e d . Any i n t e r - u s e r t e rmina l
output (e . g . , messages from the superv isor te rminal) i s p r i n t e d a t the
t e rmina l bu t not in t he output f i l e .

F i l e Options

These s t op or r e s t a r t ou tput to the command f i l e . Tney may a l s o be
used to append ou tpu t to an e x i s t i n g f i l e .

-PAUSE Stop ou tpu t to command f i l e ; l eave f i l e open.

-CONTINUE Resume output (hal ted by -PAUSE) to the command ou tpu t
f i l e . Or, i f a t PRIMOS l e v e l , re-open an e x i s t i n g
COMOUTPUT f i l e and pos i t i on t he p o i n t e r so t h a t new
output w i l l be appended.

-END Stop output to command f i l e ; c l o s e f i l e .

A BREAK t u r n s te rmina l output on , but does not c l o s e the f i l e . A
LOGOUT t u r n s t e rmina l ou tpu t on and a l s o c l o s e s t he command ou tpu t
f i l e , as well as any o the r f i l e s the user has c u r r e n t l y open. For
example:

CQMO FTNTEST.COMO

opens the f i l e FTNTEST.COMO for output and p o s i t i o n s t h e p o i n t e r to the
s t a r t of the f i l e . If FTNTEST.COMO a l r eady e x i s t s , i t s p rev ious
c o n t e n t s w i l l be de le t ed immediately. Tb open an e x i s t i n g f i l e for
appending, t y p e :

REV. 0

PDR4130 COMMAND FILES AND PHANTOMS

COMO FTNTEST.COMO -C

This opens the file FTNTEST.COMO and positions the pointer at the end
of the file.

Closing Command Output Files

Command output files are closed by the COMO -END command. For example:

COMO TEST.COMO
SLIST RECORDS
COMO -END

USING DATE AND TIME IN COMMAND FILES

The DATE Command

The command DATE prints the system date and time at the user terminal.

OK, DATE
GO

Wednesday, October 10, 1979 10:11 AM

OK,

This f e a t u r e a l lows command output f i l e s to be stamped with d a t e / t i m e
information for i d e n t i f i c a t i o n , a s an aid to program development and
debugging. For example, the sequence of commands:

COMO TEST1.COMO
DATE

DATE
COMO -END

creates a file, TEST1.C0MO. The first line of this file is the DATE
command; the next line is the time and date of this interactive
session.

DATE may also be included in command input files or, in command files
for Batch execution.

December 1980

SECTION 9 PDR4130

The TIME Command

The command TIME entered at the user terminal prints the current values
in the time accounting registers. These are: connect time, compute
time, and disk I/O time.

OK, TIME
1'32 0fll 0'08

OK,

Connect time i s the time s ince LOGIN (in hours and minutes) . Compute
time i s t he time accumulated executing commands or using programs (in
minutes and seconds) . This does not inc lude d i sk I/O t i m e . Disk I/O
time (in minutes and seconds) i s the accumulated time for d i s k input
and o u t p u t . Disk I/O inc ludes paging I/O time genera ted on the u s e r ' s
beha l f . All t imes inc lude system superv i sor overhead caused by user
requ i rements .

The TIME command can be given before and a f t e r execut ing a program.
The time d i f f e r e n c e s can be used to benchmark the program and measure
e f f i c i e n c y a s t he program i s op t imized .

Example; The command input f i l e BENCH07.CO c o n t a i n s t he fo l lowing :

COMO BENCH07.COMO
/ * TIMING TEST OF BENCH07 PROGRAM
DATE
/* GET START TIME VALUES
TIME
SEG TEST
/* GET STOP TIME VALUES
TIME
COMO -END
CO -TTY

The command CO BENCH07.CO executes t h i s command f i l e . Upon comple t ion ,
the ou tpu t f i l e BENCH07.CQMO con ta ins the fo l lowing:

OK, /*TIMING TEST OF BENCH07 PROGRAM
DATE

Thursday, November 20, 1980 10:24 AM

OK, /*GET START TIME VALUES
TIME

0 '11 0 '03 0 '03
OK, SEG TEST
The answer i s 70

OK, / * GET STOP TIME VALUES
TIME

0 '11 0 '03 0'04
COMO -END

REV. 0

PDR4130 COMMAND FILES AND PHANTOMS

Tne RDY -LONG Command

An a l t e r n a t e method of measuring program e f f i c i e n c y i s provided by t he
RDY -LONG command. When t h i s command i s g i v e n , each OK prompt inc ludes
the time of day , t he amount of CPU time (in seconds) and the amount of
I/O time (a lso in seconds) used s ince the l a s t prompt.

OK, RDY -LONG
OK 09:21:29 0.284 0.324

To re tu rn prompts to t h e i r normal form, use the command RDY -BRIEF:

OK 09:21:43 0.036 0.000
RDY -BRIEF
OK,

As an example of using the RDY command, l e t us modify t he command f i l e
BENCH07.CO:

COMO BENCH07A.CQMO
/*TIMING TEST OF BENCH07 PROGRAM
DATE
/*use rdy-long for t ime between prompts
RDY -LONG
SEG TEST
COMO -END
CO -TTY

The output f i l e for the new command f i l e i s as fo l l ows :

TIMING TEST OF BENCH07 PROGRAM
DATE

Wednesday, November 19, 1980 10:06 AM

OK, / * u s e rdy- long for time between prompts
RDY -LONG
OK 10:06:15 3.560 3.924
SEG TEST
The answer i s 70

OK 10:06:18 0.287 1.051
CCMO -END

December 1980

SECTION 9 PDR4130

PHANTOM USERS

The phantom user feature allows command file processing without tying
up a terminal. Once a phantom process has been initiated, it is
treated by PRIMOS as a separate process that is not associated with a
terminal. The terminal is then made available for other uses.

The command file or CPL program run by the phantom process specifies
the commands and their sequence, program invocations and necessary
input data required to complete a particular job. Phantoms are used
for long compilations, loadings, and executions that are debugged and
require no interactive terminal input. Certain PRIMOS system utilities
(e.g., FAM, SPOOL) are implemented as phantom processes.

Using Phantoms

A phantom user process is initiated by the command:

fcPL-args)
PHANTOM filename ifile-unitj

filename is the name (or pathname) of a CPL program or command input
file.

If a COMINPUT file or special Phantom command file is to be run, then
file-unit may be the PRIMOS file unit number on which the command file
is to be opened. If omitted, file unit 6 is used. (File units may not
be specified for CPL programs, which allocate their file units
automatically.)

If a CPL program is being run as a phantom, then CPL-args are the
arguments to be passed to the CPL program.

The PHANTOM command checks for available phantom processes. The number
varies with each installation. The message:

No phantoms are available. FILENAME

is returned if no processes are available. Control is then returned to
PRIMOS. When a phantom process is available, the message:

PHANTOM is user user-number

is returned and the phantom user is logged in (under the same
login-name as the invoker). user-number is the number assigned by
PRIMOS to the phantom process. Control returns to PRIMOS, the terminal
is freed for other use, and the phantom command file is opened on the
specified (or default) unit. PRIMOS then reads all further commands
for the phantom user from the command file.

REV. 0 9 - 1 0

PDR4130 COMMAND FILES AND PHANTOMS

Phantom Operation

Phantom processes should not execute programs which require input from
an actual terminal. Such an instruction will abort and log out the
phantom process.

While a phantom process is in operation, terminal output is suppressed
unless a command output file has been opened by a COMOUTPUT command in
the phantom command file. Output is then written to the COMOUTPUT
file.

It is possible to initiate another phantom from a running phantom, in a
manner similar to chained COMINPUT files. However, there is no
guarantee that a phantom user process will be available when the
process is requested by a command file.

The final command in the last executed phantom command file should be
LOGOUT. If it is not, the phantom will report an abnormal termination
when it is logged out.

Phantom Logout

At the completion of a job process, phantom users are automatically
logged out. To cancel a phantom user process before completion, use
the command:

LOGOUT -user-number

user-number is the PRIMOS-assigned phantom user number.

Any phantom can be logged out from the supervisor terminal. From a
user terminal, a phantom can be logged out only if the terminal has the
same login UFD as that which initiated the phantom.

Logout Notification

When a phantom logs out, notification is sent to the terminal of the
user who started the phantom. Normal logout is shown by a message such
as:

PHANTOM 87 NORMAL LOGOUT AT 11:27
time used= 0:1 0:0 0:0

Forced logout (the result of an error that halted the phantom program,
a deliberate LOGOUT command, or the absence of LOGOUT as the final
command in the phantom's final command file) results in a message such
as:

PHANTOM 86 ABNORMAL LOGOUT AT 11:13
time used= 0:1 0:0 0:0

- 11 December 1980

SECTION 9 PDR4130

In these messages, the figures following the phrase "time used"
indicate elapsed time, CPU time, and I/O time used by the phantom
process.

If the user who started the phantom logs out before the phantom
completes its job, logout notification cannot be sent to the user's
terminal. It is possible, however, for users to set up programs to
record phantom logout notifications. This is done using the
subroutines LO$R and LO$CN. For information on these subroutines, see
The PRIMOS Subroutines Reference Guide.

Phantom STATUS Information

The STATUS USER command (discussed in Section 3) provides a list of all
the users in the system, their login numbers, assigned line numbers,
etc. Phantom users are distinguished by the code PH in the line number
field of a STATUS list. For example:

OK, status users

USER
SYSTEM

CROW
PERCH
ELM
BALSA
OWL
HAWK
CORAL
WILLOW

BEECH
PARROT
BIRCH

NO
1
7
8

11
13
19
21
38
46
49
50
51

LINE DISKS
ASR <SYS.K>

5
6 <PLAINS>

11
13
2 1 <QAGRP3>
23 <QAGRP3>
44
54 <QAGRP3>

REM <FOREST>
REM <QAGRP3>
REM <PLAINS>

AL57
(TO NJE)

(TO NJB)
(TO NJB)

(TO NJE)

(FROM NJB
(FROM NJE
(FROM NJB

)
)
)

FAM 94 PH <QAGRP3> <SYS.K>
SYSTEM 95 PH <SYS.K> (2)

OK,

Example of Phantom Command F i l e

The phantom command f i l e TEST.PH con ta ins the fol lowing commands:

/*BEGIN TEST OF PHANTOM
COMOUTPUT TEST.COMO
DATE
/*COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
/*LOAD THE PROGRAM
SEG -LOAD
LO TEST
LI
SA

REV. 0 9 - 1 2

PDR4130 COMMAND FILES AND PHANTOMS

MAP LOADTEST.MAP 7
MAP UNSATISFIED.MAP 3
QU
/*PHANTOM TEST COMPLETED
DATE
/*CCMO -E would normal ly go h e r e .
/ * I t has been omit ted so t he logout sequence
/ * could be shown in t he comoutput f i l e .
LOGOUT

When a phantom is invoked at the terminal by PH TEST.PH, the terminal
interactive dialog is:

OK, PH TEST.PH
PHANTOM is user 61
OK,

The contents of the command file, TEST.COMO, created by the phantom
are:

OK, DATE

Fr iday , November 2 1 , 1980 10:06 AM

OK, /*COMPILE THE PROGRAM IN 64V MODE
FTN TEST -64V
0000 ERRORS [<.MAIN.>FTN-REV18.1]

OK, /*LOAD THE PROGRAM
SEG -LOAD
[SEG rev 18.1]
$ LO TEST
$ LI
LOAD COMPLETE
$ SA
$ MAP LOADTEST.MAP 7
$ MAP UNSATISFIED.MAP 3
$ QU

OK, /*PHANTOM TEST COMPLETED
DATE

Fr iday , November 2 1 , 1980 10:06 AM

OK, /*CCMO -E would normal ly go h e r e .
/ * I t has been omit ted so the logout sequence
/ * could be shown in t he comoutput f i l e .
LOGOUT
BEECH (62) LOGGED OUT AT 10:06 112180
TIME USED= 0'00 0'01 0'02

- 13 December 1980

PDR4130 BATCH JOB PROCESSING

SECTION 10

BATCH JOB PROCESSING

INTRODUCTION

Batch is the most flexible of the PRIMOS job processing utilities. Any
CPL program or command file that will run under PRIMOS can be run as a
Batch job. This means that users may write CPL programs for submission
as Batch jobs without including special Batch commands. Yet users may
also run existing COMINPUT, PHANTOM, and CX files as Batch jobs; Batch
will accept them all.

Batch offers further flexibility in job scheduling and execution
control. Each Batch queue has a phantom from which to run users' jobs.
These phantoms run "in the background" of the system: that is, they
run concurrently with interactive jobs, but at somewhat lower
priorities. Thus, they use only small amounts of CPU time when
interactive use is heavy, but utilize large amounts of CPU time when
interactive use is light or absent. Furthermore, Batch jobs may be
held in their queues by operators, then released to run at appropriate
times. Thus, extremely long jobs, such as file updates and backups,
can be set up as Batch jobs during the day, then run under operator
control at night.

Each Batch queue is a separate entity, defined by the System
Administrator to be particularly hospitable to certain types of jobs.
Queues designed for short jobs have a fairly high scheduler priority,
but a short timeslice; queues designed for normal jobs have slightly
lower priorities and normal timeslices. Queues designed for long jobs
have low priorities but large timeslices. The queues for short jobs
will thus run fastest, as they can operate during times of heavier
interactive use. The other queues will take fuller advantage of
periods of lighter activity. By using the BATGEN (BATch GENeration)
command, explained below, users can see what queues are available and
what their characteristics are. They can then submit their jobs to the
appropriate queues.

USING THE BATCH SUBSYSTEM

Users communicate with the Batch subsystem through four commands:
BATCH, BATGEN, JOB, and $$ JOB. With these commands, they can:

• Submit jobs (JOB)

• Set job parameters (JOB, $$ JOB)

• Modify, cancel, abort, or restart jobs (JOB)

10 - 1 December 1980

SECTION 10 PDR4130

• Monitor subsystem usage (BATCH)

• Monitor queue c h a r a c t e r i s t i c s and a v a i l a b i l i t y (BATGEN)

These o p e r a t i o n s a r e descr ibed below.

SUBMITTING BATCH JOBS

To submit a j o b , use the command:

-ACCT information
-ARGS c pi-arguments
-CPL

JOB pathname-1

-CPTIME {

-ETIME

seconds

NONE

(minutes I

NONE

-FUNIT number

-HOME pathname-2

-PRIORITY va lue

(NONE]

-QUEUE queue-name

-RESTART'
YES

NO

Batch wi l l then send a " job submitted" response announcing the j o b ' s
j o b - i d number and reminding the user (i f he d i d n ' t use the -HOME
opt ion) of t h e home UFD for the j o b . For example:

OK, job pnjob
[JOB rev 18.1]
Your j o b , #00015, was submitted to queue Narmal-l^
Home=<F0REST>BEECH>BRANCH4>TWIG

As t h i s example shows, jobs may be submitted wi thout o p t i o n s . The
Batch monitor places these jobs in the f i r s t ava i lab le queue and uses
that queue's default values for a l l necessary parameters. On the other
hand, users may specify queue and/or parameters, using the JOB
command's options as described below.

tote

All numbers must be decimal integers.

REV. 0 10

PDR4130 BATCH JOB PROCESSING

Option Description

-ACCT information Allows the user to specify accounting
information for his job. The information
must be 80 characters or less in length. It
may not be an explicit register setting
(octal number) or be preceded by an unquoted
minus sign. If the information contains
spaces, commas, or comment delimiters (/*) it
should be enclosed in apostrophes. (For
example: -ACCT 'OK, HERE WE GO'). The
information will be included in job DISPLAYS,
but will not be used in running the job.

-ARGS cpl-args Used to pass CPL arguments to the job being
processed. -ARGS must be the last option
issued on a command line as everything that
follows the -ARGS option on the command line
(except comments) is assumed to be the CPL
arguments being passed. JOB doesn't read the
CPL arguments; it just passes them to the
CPL file when execution of the file begins.

-CPL Runs submitted file as a CPL file, no
what the file's name is.

matter

-CPTIME (secondsI
NONE |

-ETIME (minutes]
JNONE |

Specifies the maximum amount of CPU time (in
seconds) to be allotted to the job. NONE
requests that no time limit be placed on the
job. If the job exceeds the time limit, it
will be aborted.

Specifies (in minutes) the elapsed time to be
allowed before the job is aborted. Details
are the same as those for -CPTIME.

-FUNIT number Specifies the file unit to be used for
command input. Permissible values range from
1 to 16, to 1 to 126, depending on the limit
set by the System Administrator. Default
depends on the queue to which the job is
submitted. It is usually 6.

-FUNIT may not be used in CPL jobs, as CPL
jobs receive dynamically assigned file units.
Attempts to use -FUNIT result in the
following message:

Illegal combination. -FUNIT (JOB)

A similar message is received, but either the
-ARGS or the -CPL option appears on the same
command line as -FUNIT.

10 December 1980

SECTION 10 PDR4130

-HOME pathname

-PRIORITY value

Specifies the UFD in which a job is to run.
Using this option has the same effect as
providing an ATTACH command as the first line
of the command file. The pathname for a
-HOME option, however, may not be a null
specification or a relative pathname (i.e.,
it may not begin with *>) , and may not exceed
80 characters in length.

Determines the job's priority within its
queue. Possible values are from 0 to 9, with
9 being the highest (most favored) priority.
The default depends on the queue.

-QUEUE queuename

-RESTART

Names the queue in which the
placed. (To learn the
characteristics of queues, use
-DISPLAY command.)

job should be
names and
the BATGEN

Determines whether a job can be restarted
following an ABORT or a system shutdown. The
default is always YES.

If, for any reason, the Batch monitor cannot accept the job as
submitted, it will send the user error messages containing the
information he needs to resubmit the job successfully. These messages
are listed in Appendix A; they are generally self-explanatory.

SUPPLYING OPTIONS VIA THE $$ COMMAND

Any or all of the JOB command's eight options may be given in the first
non-comment line of the command file itself by the command:

$$ JOB
f * 1
IusernameI {options}

If a specific username is given on the .$$ command line, only a user
logged in with that username can submit the file. If an asterisk (*)
is used instead, any user can submit the file.

Users will probably find the $$ command handiest for parameters they
expect to remain constant whenever the job is submitted, and the JOB
command options handiest for parameters which change from submission to
submission.

Parameters given in the $$ JOB command line may be overridden by giving
a different value for the same parameter in the JOB command. For
instance, if you specified "$$' JOB RESEARCH -CPTIME NONE" in your file,
but wanted to run the job in a queue which had a CPU time limit, the
command "JOB TEST_SCORES -CPTIME 180 -QUEUE FAST" would run the job in
queue FAST with a CPU time limit of 180 seconds.

REV. 0 10

PDR4130 BATCH JOB PROCESSING

Note

With one exception, any Batch command file, even one including
a $$ JOB command, can be run interactively.. The exception is
a file using the $$ JOB -HOME option. When run interactively,
the $$ JOB line will be ignored, and no ATTACH will be done.
In this case, add an ATTACH command to the file immediately
following the $$ JOB line.

CONTROLLING BATCH JOBS

Modifying Parameters

To modify a job's parameters after it has been submitted, use the
-CHANGE option of the JOB command:

(jobname)
j o b - i d j-CHANGE

-ACCT information
-CPTIME /seconds*

INONE I
-ETIME iminutes\

< INONE J
-FUNIT number
-HOME pathname
-RESTART (YES)

(NO I

For example:

JOB #10039 -CHANGE -ACCT ' r e s e a r c h ' -HOME ECON>STATS
JOB TEST_SCORES -CHANGE -FUNIT 8 -RESTART YES

A j o b ' s -QUEUE and -PRIORITY o p t i o n s cannot be CHANGEd. If t hey a r e in
e r r o r , t h e j o b must be CANCELed and r e submi t t ed .

Res ta r t ing Jobs

Users wishing to CHANGE j o b s which a r e a l r e a d y running can do so by
following a JOB -CHANGE command with a JOB -RESTART command. For
example:

JOB TEST_SCORES -CHANGE -HOME RESRCH>STATS>NEWSTATS
JOB TEST_SCORES -RESTART

This procedure w i l l mark t he changes in the j o b ' s s t a t u s , t e rm i na t e
execu t ion , and then f lag t he job a s ready for r e s t a r t i n g under i t s new
c o n d i t i o n s .

10 December 1980

SECTION 10 PDR4130

Note

Distinguish between the -RESTART YES/NO option and the -RESTART
command. The option always takes an argument; it signals
whether or not a job may be restarted. The -RESTART command
takes no argument; it attempts to abort and restart the job.

Cancelling Jobs

To prevent a waiting or held job from running, use the command:

(jobnamel
job-id J-CANCEL

This command will not halt a job that is already running; but it will
mark that job as unrestartable.

Aborting Jobs

To terminate execution of a job already running, use:

Ijobnamel job-id j-ABORT

This command cancels a waiting or held job and forces a running job to
log itself out immediately.

The JOB -CHANGE, -CANCEL, -ABORT, and -RESTART commands will accept a
filename in place of a job-id only if that filename is unique among the
user's active jobs. Thus, if file TEST has been submitted once, the
command "JOB TEST -CANCEL" will work. But if two submissions of TEST
(for example, #10057 and #10064) are active, you must use the job-id to
tell the monitor which job to cancel. The monitor accepts only one
command at a time; JOB TEST -ABORT -RESTART is illegal, as is JOB
#10035, #10039 -CANCEL.

MONITORING BATCH

Users may monitor their own jobs within the Batch system by using the
JOB -STATUS and JOB -DISPLAY commands; they may monitor subsystem
usage through the BATCH -DISPLAY command; and they may monitor the
characterisitics and availability of queues through the BATGEN -DISPLAY
and BATGEN -STATUS commands. These commands work as follows:

^ JOB
job-id
jobname

-STATUS
-DISPLAY

REV. 0 10

PDR4130 BATCH JOB PROCESSING

Monitors t h e p rog re s s of the u s e r ' s own j o b s . The -STATUS and DISPLAY
op t ions govern the amount of information to be shown, whi le the jobname
and j o b - i d o p t i o n s a l low the user to spec i fy the j o b s on which he wants
informat ion, a s fo l l ows :

Option Descr ip t ion

job - id A 5 - d i g i t number assigned to a j o b by t he
monitor when the job i s placed in a queue.
Use the j ob - id to request , informat ion on one
job o n l y .

jobname The name of the f i l e being run . If t he j o b
was submitted a s a pathname (e . g . , JOB
FELLOWSHIP>HOBBITS>FRODO), i t s jobname i s the
f i n a l element of the pathname (e . g . , FRODO) .
Use t h i s format to r eques t informat ion on
m u l t i p l e submissions of a f i l e .

(Omitting jobname and j o b - i d r eques t s information on a l l t he u s e r ' s
a c t i v e j o b s .)

-STATUS

-DISPLAY

P r i n t s out t he j o b ' s jobname and j o b - i d , t he
name of the queue in which i t i s p l a c e d , and
i t s execut ion s t a t u s : whether i t i s h e l d ,
w a i t i n g , running , completed, or a b o r t e d .

Provides s t a t u s information and v a l u e s for
a l l JOB and $$ JOB command o p t i o n s (except
for "-HOME") — both those s p e c i f i e d by t h e
user and those assumed from queue-defined
d e f a u l t s .

Using the MESSAGE Command

Another way t o monitor your Batch j obs i s t o have t h e j o b s send
messages to your t e rmina l announcing t he complet ion of key p o r t i o n s
of the j o b . To do t h i s , use the MESSAGE command (explained in
Section 14) , a s shown below.

Messages from CPL Programs: CPL programs put t h e i r messages in
&DATA groups . The format i s :

|user-number \
&DATA MESSAGE (uFD-name)

t e x t of message
&END

10 December 1980

SECTION 10 PDR4130

For example:

&DATA MESSAGE BEECH
Customer list update completed

& END

Messages from COMINPUT Files; Command input files write the text
of their messages as comment lines:

(user-number)
MESSAGE |UFD-name J
/* text of message

For example:

MESSAGE BEECH
/ * Customer update completed

Using t h i s format p reven t s e r r o r s from occurr ing i f t h e r e c i p i e n t
of t he message i s no t logged in a t the time t h e message i s t o be
s e n t .

^ BATCH -DISPLAY

Monitors Subsystem Usage. I t p r i n t s the number of j o b s wai t ing in
each queue and l i s t s a l l jobs c u r r e n t l y execu t i ng , i d e n t i f y i n g them
by u s e r , j o b - i d , phantom user-number, and queue. For example:

OK, batch - d i s p l a y
[BATCH rev 18.1]

Number of wai t ing and held j o b s :

Queue Jobs

Normal-2 76

Cur ren t ly running j o b s :

User Jobid# # Queue

TURNER #10032 60 Normal-2
BURLEY #00172 62 Normal-1

REV. 0 1 0 - 8

PDR4130 BATCH JOB PROCESSING

^ BATGEN -STATUS

Lis t s t he c u r r e n t l y def ined queues and n o t e s whether each i s
blocked (not accep t ing jobs) or unblocked (a v a i l a b l e for use) .

• BATGEN -DISPLAY [queuename]

I d e n t i f i e s and g i v e s f u l l c h a r a c t e r i s t i c s for each queue, i f
queuename i s no t s p e c i f i e d . If queuename i s s p e c i f i e d , g i v e s
c h a r a c t e r i s t i c s for t h a t queue o n l y . For example:

OK, batgen - d i s p l a y normal
[BATGEN rev 17.2]

Queue name = normal , unblocked.
Default cptime=30, etime=None, p r i o r i t y = 5 ;
Maximum cptime=180, etime=None; Funit=6;
Delta r l eve , l= l ; Timesl ice=20;

In t h i s example, normal i s the queue ' s name, unblocked means t h a t
the queue i s accep t ing j obs for queueing and e x e c u t i o n . The
d e f a u l t cptime and etime va lues w i l l apply to j obs t h a t d o n ' t
spec i fy t h e i r own CPU t ime or e lapsed time o p t i o n s . The maximum
cptime and et ime v a l u e s a r e t he l a r g e s t allowed for any job running
from the queue. P r i o r i t y and f u n i t a r e d e f a u l t v a l u e s for those
o p t i o n s .

Delta r l e v e l and t i m e s l i c e r e f e r to run- t ime p r i o r i t i e s . Queues
with high d e l t a r l e v e l s and l a r g e t i m e s l i c e s a r e b e s t for long
j o b s ; queues with low d e l t a r l e v e l s and s h o r t t i m e s l i c e s a r e b e s t
for s h o r t j o b s . The queue in t he example i s designed for average
j o b s .

Note

If the System Administrator has not read-enabled the BATDEF
file, the BATGEN commands will return error messages. In
this case, users needing information about queues should
see their supervisor, the operator, or the System
Administrator.

1 0 - 9 December 1980

Partm
System Facilities

PDR4130 FILE-HANDLING UTILITIES

SECTION 11

FILE-HANDLING UTILITIES

INTRODUCTION

This section introduces you to Prime's basic f i l e handling u t i l i t i e s .
These u t i l i t i e s allow you t o :

• Sort one or more unsorted f i l e s into one sorted f i l e (SORT)

• Merge several sorted f i l e s into one sorted f i l e (SORT)

• Compare f i l e s with each other (CMPF)

• Resolve differences between f i l e s (MRGF)

• Move f i l e s and subdirectories between d i r ec to r i e s (FUTIL)

• Copy or de le te en t i r e d i rec to r i e s (FUTIL)

SORTING FILES (SORT)

The SORT command sor t s up to 20 f i l e s , on up to 50 keys, into a s ingle
output f i l e . SORT preserves the order of input for records with equal
keys (i . e . , i t i s a s tab le s o r t) .

Most sor t s are done on ASCII f i l e s (also called compressed f i l e s) , such
as those created by the t ex t edi tor (ED). The following discussion
emphasizes how to do ASCII s o r t s . In addi t ion, SORT can process
uncompressed f i l e s , var iable length f i l e s (also cal led binary f i l e s) ,
and fixed length f i l e s . The basic format for using SORT i s the same
for every f i l e type, but d e t a i l s vary from type to type. The PRIMPS
Commands Reference Guide contains complete information and sort ing
ins t ruct ions for each f i l e type.

SORT can also sor t f i l e s using the EBCDIC col la t ing sequence. For
d e t a i l s , see The PRIMOS Commands Reference Guide.

1 1 - 1 December 1980

SECTION 11 PDR4130

Using SORT

To use SORT, provide information in a three- or four-step sequence, as
follows:

1. Give the SORT command.

2. Specify the sort files and number of sort fields, either by a
simple parameter list or by the use of keywords.

3. Specify the starting and ending columns of sort fields (keys).

4. If -MERGE is specified, enter additional filenames.

SORT normally specifies the information it wants at steps 2, 3, and 4.
Bbwever, once you are familiar with the prompt dialog, you can suppress
the printout by using the -BRIEF option with the command line. If
-BRIEF is specified, simply give the information line by line in the
same order SORT asks for it. Refer to the sample sort that concludes
this discussion for an example of the SORT dialog.

The SORT Command

To invoke SORT, give the SORT command, either by itself or accompanied
by one to four options:

-TAG
-NONTAG

SORT [-BRIEF] [-SPACE] [-MERGE]

SORT'S o p t i o n s a r e a s fo l lows :

Option Meaning

-BRIEF SORT program-messages a r e not p r i n t e d a t the use r s

t e r m i n a l .

-SPACE Any blank l i n e s a r e de le ted from the SORT ou tpu t f i l e .

-MERGE A merge of p resor ted f i l e s i s r eques t ed .
-TAG A TAG s o r t (described below) i s r e q u e s t e d .

-NONTAG A NONTAG s o r t (described below) i s r e q u e s t e d .

A TAG s o r t i s spec i f i ed when l a r g e f i l e s a r e s o r t e d . For unordered
f i l e s i t i s a f a s t e r s o r t than NONTAG. I n t e r n a l l y , t h e TAG s o r t s t o r e s
input r ecords s e p a r a t e from the key d a t a . After a l l keys have been
sor ted and merged, the corresponding records a r e then loca ted and
o u t p u t .

REV. 0 11

PDR4130 FILE-HANDLING UTILITIES

A NONTAG sort may be specified for smaller or well ordered input files.
Internally, the NONTAG sort stores each input record with its sort key
in the work file. This eliminates the search for each record after
merging, but requires more disk space.

If neither -TAG nor -NONTAG is specified, the system defaults to TAG.

Note

Output files may be a different type than input files.

SORT responds by requesting:

• The name of the file to be sorted

• The name of the output file to be created

• The number of keys for the sort (default is 1)

Simple File and Key Specifications

The simplest type of sort reads one unsorted ASCII file and creates
another sorted ASCII file. To specify this sort, simply list the
filenames and number of keys (if greater than 1) on one line, then list
the starting and ending columns for each key field on a separate line.
If the data within a key field are to be sorted by some code other than
straight ASCII, type a space and the data type after the ending column.
(The SORT dialog will list data types and their codes. They are also
explained, in greater detail, in The PRIMPS Commands Reference Guide.)
If the sort on any key is to be done in reverse (descending) order,
type a space and an "R" after the ending column or data type. For
example, to sort a list of names and addresses, the entire entry of 80
characters might constitute the sort field, and the commands would run:

OK, SORT -BR
JUMBLED. NAMES NEAT.NAMES
1 80

Unless the -MERGE option has been specified, sorting begins when the
last pair of column numbers is entered. When the sort is complete,
SORT prints at the terminal the number of passes needed for the sort
and the number of items (i.e., lines) placed in the output file, and
then returns to PRIMOS.

Other File Specifications

If you are sorting more than one file, give all filenames plus the
number of keys on a single line in the following format:

-INPUT inputfile [...-INPUT inputfile] -OUTPUT outputfile -KEYS n

1 1 - 3 December 1980

SECTION 11 PDR4130

For example:

OK, sort -brief
-input chaos.1 -input chaos.2 -output order -keys 2
1 10
15 20 r

BEGINNING SORT

PASSES 2 ITEMS 10

[S0RT-REV18.1]

OK,

If you are sorting uncompressed or fixed length files, or if you are
sorting binary files using ASCII keys, you will have to specify
additional file information (via keywords) along with the filenames.
See The PRIMOS Commands Reference Guide for details.

Key Specifications

SORT recognizes 13 types of keys. ASCII files (compressed and
uncompressed) can use seven of them: A and AU for alphanumeric data,
U, LS, TS, LE and TE for numeric data.

Alphanumeric keys: The two alphanumeric keys are ASCII (A) , which
sorts in a strict ASCII sequence, and ASCII, upper and lower (AU) ,
which sorts all alphanumeric characters as if they were uppercase.
(The ASCII sequence is given in Appendix C.) The default key type is
strict ASCII (A).

Given the four words, APPLE, alphabet, WHY, and whynot, ASCII (A)
produces:

APPLE
WHY
alphabet
whynot

AU produces:

alphabet
APPLE
WHY
whynot

REV. 0 11

PDR4130 FILE-HANDLING UTILITIES

Numeric keys ; Three common numeric keys for ASCII s o r t s a r e :

• U Numbers without p lus or minus s i g n s

• LS Numbers preceded by p lus or minus s igns
(Numbers without s i g n s a r e considered p o s i t i v e .)

• TS Numbers followed by p lu s or minus s igns
(Numbers without s i g n s a r e considered p o s i t i v e .)

(The LE and TE keys , which have the s ign embedded in t h e numeral , a r e
explained in The PRIMPS Commands Reference Guide.)

Here i s an example of a s o r t on an LS key:

OK, s o r t -b r
numbers numbers.1
1 10 I s

BEGINNING SORT

PASSES 2 ITEMS 7

[S0RT-REV18.1]

OK, slist numbers.1
-9999
-8205
-6783
4114
+5483
8265

+9765

OK,

Additional Filenames for MERGE Operation

After key fields have been specified using the -MERGE option, SORT asks
for the number of additional files to be merged. If you have already
listed all input files with the -INPUT format, this number is 0.
Otherwise, give the number of additional files and then the names of
the files, one name per line. When the last name is entered, the
mergesort begins. When the merge is complete, SORT prints the number
of passes and returns to PRIMOS.

1 1 - 5 December 1980

SECTION 11 PDR4130

A Mergesort Example

Here is an example of a mergesort. Assume we have created two
transaction files, in which each line (record) has the following
format: a transaction number in columns 1-5, a credit or debit
notation in column 6, a customer name in columns 8-17, a customer ID
number in columns 19-25, and other data in the remaining columns. Each
file has been sorted by customer name, customer ID, and transaction
number (in reverse order, so that most recent transactions come first).
Now we are going to merge the two files, sorting on the same three
keys. The sort, with the full SORT dialog, is as follows:

OK, sort -merge
SORT PROGRAM PARAMETERS ARE:
INPUT TREE NAME — OUTPUT TREE NAME FOLLOWED BY
NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS,

cust.credits cust.accts 3
INPUT PAIRS OF STARTING AND ENDING COLUMNS
ONE PAIR PER LINE—SEPARATED BY A SPACE.
FOR REVERSE SORTING ENTER "R" AFTER DESIRED
ENDING COLUMN—SEPARATED BY A SPACE.
FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE
AT THE END OF THE LINE—SEPARATED BY A SPACE.

"A" - ASCII
"I" - SINGLE PRECISION INTEGER
"F" - SINGLE PRECISION REAL
"D" - DOUBLE PRECISION REAL
"J" - DOUBLE PRECISION INTEGER
"U" - NUMERIC ASCII,UNSIGNED
"LS" - NUMERIC ASCII,LEADING SEPARATE SIGN
"TS" - NUMERIC ASCII,TRAILING SEPARATE SIGN
"LE" - NUMERIC ASCII,LEADING EMBEDDED SIGN
"TE" - NUMERIC ASCII,TRAILING EMBEDDED SIGN
"PD" - PACKED DECIMAL
"AU" - ASCII, UPPER LOWER CASE SORT EQUAL
"UI" - UNSIGNED INTEGER

DEFAULT IS ASCII.
8 17
19 25
1 5 r
INPUT THE NUMBER OF ADDITIONAL FILES TO BE MERGED. (MAX= 10): 1
INPUT FILES TO BE MERGED, ONLY ONE PER LINE,

cust .debits

REV. 0 11

PDR4130 FILE-HANDLING UTILITIES

BEGINNING MERGE

PASSES ITEMS 10

[S0RT-REV18.1]

OK, slist cust,
89424+ Jones
81884- Jones
12345+ Jones
67340- Jones
54936+ Jones
49480- Jones
86889+ Smith
29622+ Smith
23220- Smith
21220+ Smith

.accts
BR9438
BR9438
BR9438
XL1489
XL1489
XL1489
CS4192
CS4192
CS4192
CS4192

other
other
other
other
other
other
other
other
other
other

data
data
data
data
data
data
data
data
data
data

about
about
about
about
about
about
about
about
about
about

transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction

OK,

FILE COMPARISON (CMPF)

The PRIMOS command CMPF permi t s the s imultaneous comparison of
f ive ASCII f i l e s of vary ing l e n g t h s . The format i s :

CMPF f i l e - 1 f i l e - 2 [f i l e - 5] [opt ions]

up to

The first
the other

f i l e ,
f i l e s

f i l e - 1 , i s t r e a t e d a s the o r i g i n a l f i l e a g a i n s t which
The a r e compared. The CMPF command produces ou tpu t

i n d i c a t i n g which l i n e s have been added, changed, or d e l e t e d in t he
o the r f i l e s .

Tne op t ions which may be spec i f i ed a r e :

Option

-BRIEF

-MINL number

Function

Suppresses the p r i n t i n g of d i f f e r i n g l i n e s
of t e x t of f i l e s being compared. Only
i d e n t i f i c a t i o n l e t t e r s and l i n e numbers a r e
p r i n t e d .

Sets t h e minimum number of l i n e s t h a t must
match a f t e r a d i sc repancy between f i l e s i s
found. Needed in order to resynchronize
f i l e comparison. Default = 3 l i n e s .

11 December 1980

SECTION 11 PDR4130

-REPORT filename Produces a file with specified filename,
containing the differences found between
compared files (in lieu of displaying them
at the terminal during the comparison
process).

After a difference between the original file and another specified file
has been discovered, CMPF attempts to resynchronize the files for
comparison. This occurs only when a certain number of lines match in
all the files being compared. The default value is 3f but can be
changed in the -MINL option. The comparison process continues until
another difference is found.

When line differences are reported, either at the terminal or in a
report file, each line from the original file is indicated by the
letter A, followed by the line number of the line containing
discrepancies. The corresponding lines of other files are indicated in
the same manner using letters B through E respectively.

Example; Consider the following two files:

FILEA FILEB

The
quick
brown
fox
jumps
over
the
l a z y
dog

The
swif t
red
fox
jumps
over
the
dog

A CMPF comparison of these two files works as follows

OK, CMPF FILEA FILEB
GO

A2 quick
A3 brown
CHANGED TO
B2 swift
B3 red

A8 lazy
DELETED BEFORE
B8 dog.

COMPARISON FINISHED.
2 DISCREPANCIES FOUND.

OK,

REV. 0 11

PDR4130 FILE-HANDLING UTILITIES

MERGING TEXT FILES (MRGF)

The MRGF command merges up to five ASCII files. The format is:

MRGF file-1 [file-2 ...file-5] -OUTF outfile [options]

The first file specified is treated as the original file, and it is
assumed that changes have been made to this file to produce the other
files. Pathnames may be used to specify files to be merged. Unchanged
lines of text and nonconflieting changes between files are
automatically copied to the output file, outfile. When corresponding
lines of text in the files differ, the user is asked by the MRGF
program to solve the conflicts. This is done by entering an
interactive mode in which the user can specify the contents of the
output file. In this mode, the command x (x = A-E) causes all the
queried lines from file X to be inserted; the command xn causes line n
from file X to be inserted. New text can be inserted by entering a
blank line at the terminal (thus sending MRGF into input mode) , typing
the new text, and then typing another blank line. No text editing can
be performed on lines thus input, and no expansion of tab characters
will be done. The lines must be entered character-for-character as
they are to appear.

The options taken by the MRGF command are similar to those for the CMPF
command. There is an additional option,'-FORCE, which causes file-2 to
be the preferred file if conflicts exist between several files. No
MRGF interactive dialog will be generated when conflicts arise if the
-FORCE option is used. File-2 is assumed "correct" and the other files
forced to comply with it.

FILE UTILITY (FUTIL)

FUTIL is a file utility command for copying, deleting, and listing
files and directories. FUTIL is most often used for copying files and
directories from one directory to another. It is also useful for
deleting groups of files and entire directories. Its list option
allows the user to examine file and directory properties and to keep
track of the contents of directories involved in the copy or delete
processes. FUTIL allows operations on files within User File
Directories (UFDs) and segment directories.

Invoking FUTIL

To invoke FUTIL, type FUTIL. When ready, FUTIL prints the prompt
character, >, and waits for a command string from the user terminal.
FUTIL accepts either upper- or lowercase input, but passwords must be
entered exactly as they have been created. (Most other commands will
convert passwords to uppercase before attempting the match. FUTIL does
not.) To abort long operations (such as LISTF) , type BREAK, and
restart FUTIL by typing S 1000.

1 1 - 9 December 1980

SECTION 11 PDR4130

Tb use FUTIL, type one of the FUTIL subcommands (listed below) followed
by a carriage return, and wait for the prompt character before issuing
the next command. The erase (") and kill (?) characters are supported
in both command and subcommand liner

FUTIL Commands

Below are some examples of the most commonly used FUTIL commands. Pn
overview of FUTIL commands appears at the end of this section. For
complete details on all the FUTIL commands, which are summarized at the
end of this section, see The PRIMOS Commands Reference Guide.

Copying Files and Directories

FUTIL provides several commands which allow the user to copy files,
directories, or directory trees. These commands, their functions and
formats are listed below:

Command Function

COPY Copies files (as many as will fit on line).

TRECPY Copies directory trees.

UFDCPY Copies entire UFD structure (complete with all
files) .

TO Specifies directory to which file(s) or directories
are to be copied. Accepts a pathname. Default is
home directory.

FROM Specifies directory from which files or directories
are to be copied. Accepts a pathname. Default is
home directory.

The general formats of these comands are:

COPY filename [new-name],[filename new-name]

TRECPY filename

UFDCPY

REV. 0 1 1 - 1 0

PDR4130 FILE-HANDLING UTILITIES

Copying F i l e s : In order to copy a f i l e , the user must have read
access r i g h t s . The name of a f i l e may be changed by indicating the
desired new name immediately after the current name has been
specified. Filename pa i r s are separated by commas on the command
l i n e .

Situation 1; Suppose we want to copy the f i l e s HITS and MISSES
from the d i rec tory NAUTILUS into our current d i rec to ry , SECRETS.
The pathname of SECRETS i s represented as follows: <*>SECRETS.

In pathnames, <*> represents the current d isk . In t h i s case , i t
represents disk 2. This pathname can also be represented as
<MONITOR>SECRETS. MONITOR i s the volume-name of the logical
device, whereas 2 i s the volume-number. The volume-name and number
can be used interchangeably in a pathname, and both appear in the
following examples. Any di rec tory subordinate to SECRETS would be
described by a r e l a t ive pathname, as in , *>DOMESTIC. In r e l a t ive
pathnames, the use of * indicates the current d i rec tory .

I
To move f i l e s from any di rec tory to the current d i rec to ry , the
following general s teps are taken:

1. Invoke FUTIL.

2. Define the FROM directory.

3. Define the files to be copied and indicate new filenames
(optional).

The FUTIL dialog for this particular situation is:

OK, FUTIL
[FUTIL rev 18.1]
>FROM <1>MARINE>NAUTILUS
>COPY HITS, MISSES ZEROES
>QUIT
OK,

The files HITS and ZEROES (formerly MISSES) are now in our current
directory SECRETS, as well as in the FROM directory NAUTILUS.
Notice that a TO directory was not specified. If the TO directory
is not explicitly indicated, FUTIL assumes it to be the current
directory. Although the file MISSES is called ZEROES in the
current directory, its name is not changed in the original (or
FROM) directory.

11 - 11 December 1980

SECTION 11 PDR4130

S i t u a t i o n 2 : Suppose we want to copy a l l t h e c o n t e n t s of t h e
d i r e c t o r y HOLLAND to another d i r e c t o r y CLASSIFIED, on the c u r r e n t
d i s k . The f i l e s arid d i r e c t o r i e s contained in HOLLAND a r e c a l l e d a
d i r e c t o r y t r e e . The FUTIL d ia log would be a s f o l l o w s :

OK, FUTIL
[FUTIL rev 18.1]
>FROM <1>MARINE
>T0 <*>CLASSIFIED
>TRECPY HOLLAND
>Q

This cop ies t he d i r e c t o r y HOLLAND (with i t s subord ina te f i l e s and
d i r e c t o r i e s) to the d i r e c t o r y CLASSIFIED. The <*> i n d i c a t e s t he
c u r r e n t d i s k . HOLLAND i s now a subd i r ec to ry in CLASSIFIED.

S i t u a t i o n 3 : Suppose we wish to copy t he e n t i r e d i r e c t o r y t r e e
MARINE i n t o t he UFD REPORTS. The FUTIL d ia log would b e :

OK, FUTIL
[FUTIL rev 18.1]
>FROM <NAVY>MARINE
>T0 <MONITOR>REPORTS
MJFDCPY

>Q

The entire batch of files and directories listed under the UFD
MARINE are now listed as a subdirectory under the UFD REPORTS.

Situation 4: We can also copy files from our home (current)
directory to another. It is not necessary to specify a FROM name.
In the absence of a FROM specification, FUTIL assumes the FROM
directory to be the current working directory. Simply specify the
directory to which the files are to be copied.

The current directory in this situation is NAUTILUS. FUTIL allows
you to move to other directories with the ATTACH subcommand,
abbreviated "A". It is not necessary to return to PRIMOS in order
to change the working directory location. For example:

OK, FUTIL
[FUTIL rev 18.1]
>A <1>MARINE>NAUTILUS

The d i r e c t o r y NAUTILUS i s now the c u r r e n t working d i r e c t o r y . To
copy the f i l e HITS from t h e c u r r e n t d i r e c t o r y up to t he d i r e c t o r y
MARINE, do the fo l lowing:

>T <1>MARINE
>C HITS
>Q

REV. 0 1 1 - 1 2

PDR4130 FILE-HANDLING UTILITIES

Deleting F i l e s and D i r e c t o r i e s

Commands for d e l e t i n g f i l e s , d i r e c t o r y t r e e s and UFDs a r e :

Command Function #

DELETE Dele tes s p e c i f i e d f i l e s from FROM d i r e c t o r y .

TREDEL Dele tes s p e c i f i e d d i r e c t o r y t r e e s or segment
d i r e c t o r i e s , inc luding MIDAS f i l e s , from FROM
d i r e c t o r y .

UFDDEL Dele tes e n t i r e spec i f i ed UFD.

The user must have r e a d , w r i t e , d e l e t e / t r u n c a t e access r i g h t s to
d e l e t e any f i l e . Below a r e some s i t u a t i o n s in which FUTIL i s used
to d e l e t e s e v e r a l t ypes of f i l e s and d i r e c t o r i e s .

S i t ua t i on 1; In o rder to d e l e t e t he f i l e HITS from the sub-UFD
NAUTILUS, t he fol lowing d i a l o g could be used:

OK,FUTIL
[FUTIL rev 18.1]
>FROM <NAVY>MARINE>NAUTILUS
>DELETE HITS

S i t u a t i o n 2 : If we wanted to d e l e t e the d i r e c t o r y t r e e rooted in
the sub-UFD HOLLAND, we would do the fo l lowing:

OK,FUTIL
[FUTIL rev 18.1]
>FROM <1>MARINE
>TREDEL HOLLAND

OK,

This deletes the directory HOLLAND and its entry in MARINE.
Similarly, to delete segment directories and MIDAS files, use the
TREDEL option, as shown.

Situation 3: To delete the contents of CLASSIFIED appearing on
the current disk, (2), the following dialog could be implemented:

OK,FUTIL
[FUTIL rev 18.1]
>FROM <*>CLASSIFIED
>UFDDEL
>QUIT
OK,

11 - 13 December 1980

SECTION 11 PDR4130

This d e l e t e s a l l subord ina te d i r e c t o r i e s and f i l e s from the UFD
CLASSIFIED. The d i r e c t o r y i t s e l f , however, i s no t d e l e t e d .

Lis t ing Contents of a Di rec tory

The LISTF command in FUTIL d i s p l a y s a l i s t of a l l the f i l e s and
d i r e c t o r i e s in the FROM d i r e c t o r y . I t a l s o d i s p l a y s t he FROM
d i r e c t o r y pathname and the TO d i r e c t o r y pathname (d e f a u l t) . The
v a r i o u s op t i ons to the LISTF command provide informat ion on a l l t h e
f i l e s contained in the FROM d i r e c t o r y .

FUTIL COMMAND SUMMARY

ATTACH pathname

Changes working d i r e c t o r y t o pathname.

CLEAN pre f ix [l eve l]

Dele tes f i l e s beginning with p r e f i x , for i nd i ca t ed number of
l e v e l s (defaul t= l) .

COPY from-name [to-name] [,from-name [to-name]] . . .

Copies named f i l e s from FROM d i r e c t o r y t o TO d i r e c t o r y . If
to-names a r e omi t t ed , cop ies have same names a s o r i g i n a l s .

COPY (from-posi t ion) [(t o - p o s i t i o n)]

Copies from one segment d i r e c t o r y to a n o t h e r . If t o - p o s i t i o n
i s o m i t t e d , copy goes to same p o s i t i o n a s o r i g i n a l . Note t h a t
COPY from-name (to -pos i t i on) and COPY (from-posi t ion) to-name
a re a l so l e g a l .

COPYDAM

Same as COPY but sets file type of copy to DAM.

COPYSAM

Same as COPY but s e t s f i l e type of copy t o SAM.

REV. 0 1 1 - 1 4

PDR4130 FILE-HANDLING UTILITIES

CREATE d i r e c t o r y [owner-password [non-owner-password]]

Crea tes d i r e c t o r y in c u r r e n t TO d i r e c t o r y (with o p t i o n a l
passwords) .

DELETE f i l e - a [f i l e - b] . . .
(pos i t ion -a) [(p o s i t i o n - b)] . . .

Deletes from FROM directory, named files or, in segment
directories, deletes files at specified positions.

FORCE (ON]
I [OFF]]

ON forces read-access rights in FROM directory for LISTF,
LISTSAVE, SCAN, UFDCPY, and TRECPY. OFF stops FORCE action
(default) .

FROM pathname

Defines FROM directory for subsequent commands such as COPY,
LISTF, etc.

LISTF [level] [FIRST] [SIZE] [PROTEC] [RWLOCK] [TYPE]
[DATE] [PASSWD] [LSTFIL]

Lists files and attributes at terminal (and into optional file
called LSTFIL) .

LISTSAVE filename [level] [FIRST] [SIZE] [PROTEC] [RWLOCK]
[TYPE] [DATE] [PASSWD]

Same as LISTF, with the LSTFIL option specified, but writes
output to filename.

J>ROTEC filename [owner-access [non-owner-access]]

Sets protection attributes for filename.

SCAN filename [level] [FIRST] [_LSTFIL] [SIZE] [PROTEC]
[_RWLOCK] [TYPE] [DATE] [PASSWD]

Searches FROM directory tree for all occurrences of specified
filename and prints requested attributes.

11 - 15 December 1980

SECTION 11 PDR4130

SRWLOC filename lock-number

Sets p e r - f i l e r e a d / w r i t e l ock .

TO pathname

Defines TO d i r e c t o r y for subsequent commands such a s CREATE
and a l l copying commands.

TRECPY d i r e c t o r y - a [d i r ec to ry -b] [, d i r e c t o r y - c [d i r e c t o r y - d]] . . .

Copies d i r e c t o r y t r e e (s) in FROM d i r e c t o r y i n t o TO d i r e c t o r y .

TREDEL d i r e c t o r y - a [d i r ec to ry -b] . . .

Dele tes d i r e c t o r y t r e e (s) in FROM d i r e c t o r y .

TREPRO pathname [owner-access [non-owner-access]]

Sets p r o t e c t i o n r i g h t s for d i r e c t o r y and c o n t e n t s (d e f a u l t
1 0) .

TRESRW pathname lock-number

Se ts p e r - f i l e r e a d / w r i t e lock for a l l f i l e s in pathname,

UFDCPY

Copies entire FROM directory into TO directory.

UFDDEL

Dele tes e n t i r e FROM d i r e c t o r y .

UFDPRO [owner-access [non-owner-access [l e v e l]]]

Sets p r o t e c t i o n a t t r i b u t e s for e n t i r e FROM d i r e c t o r y .

REV. 0 1 1 - 1 6

PDR4130 FILE-HANDLING UTILITIES

UFDSRW lock-number [n-levels]

Sets pe r - f i l e read/write lock for n- levels in FROM d i rec to ry .

Lock-number Meaning Code

0 Use system read/write lock SYS
1 n readers OR 1 writer W/NR
2 n readers AND 1 writer 1WNR
3 n readers AND n wri ters NWNR

11 - 17 December 1980

PDR4130 USING TAPES AND CARDS

SECTION 12

USING TAPES AND CARDS

ACCESSING DATA ON TAPES AND CARDS

Exis t ing source programs r e s i d e n t on punched c a r d s , magnetic t a p e , or
punched paper t ape can e a s i l y be read i n t o d i s k f i l e s using
PRIMOS-level u t i l i t i e s . In a d d i t i o n , the punched card and magnetic
t ape t r a n s f e r u t i l i t i e s w i l l t r a n s l a t e from BCD or EBCDIC
r e p r e s e n t a t i o n i n to ASCII r e p r e s e n t a t i o n saving c o n s i d e r a b l e t ime and
e f f o r t .

Subroutines and o the r i n s t a l l a t i o n - d e p e n d e n t o p e r a t i o n s may be a l t e r e d
to conform to PRIMOS by using the Edi tor (ED) desc r ibed in Sect ion 4 .

The genera l o rde r of o p e r a t i o n s for input from a p e r i p h e r a l dev ice i s :

1. Obtain exc lus ive use of t he dev ice (Ass ign ing) .

2. Transfer programs with a p p r o p r i a t e u t i l i t y .

3 . Rel inquish exc lus ive use of the dev ice (Unass igning) .

Assigning a Device

Assigning a dev ice g i v e s t he user exc lu s ive c o n t r o l over t h a t
p e r i p h e r a l d e v i c e . The PRIMOS-level ASSIGN command i s g iven from t h e
t e r m i n a l :

ASSIGN dev ice [-WAIT]

device i s a mnemonic for t he a p p r o p r i a t e p e r i p h e r a l :

CRn Card Reader n (n=0,l)
MTpdn [-ALIAS MTldn] Magnetic Tape Unit pdn (pdn=0-7)
MTX -ALIAS MTldn Any M a g n e t i c Tape U n i t (l d n = 0 - 7)
PTR Paper Tape Reader

-WAIT i s an o p t i o n a l parameter . If inc luded , i t queues t h e ASSIGN
command i f t he dev ice i s a l r eady in u s e . The assignment r eques t
remains in the queue u n t i l the device becomes a v a i l a b l e or t he user
types t he BREAK key a t t he t e r m i n a l ; both occur rences r e t u r n t he user
to PRIMOS. If the requested device i s not a v a i l a b l e and the -WAIT
parameter has no t been inc luded , the e r r o r message:

The dev ice i s in u s e . (ASSIGN)

w i l l be p r i n t ed a t t he t e r m i n a l .

1 2 - 1 December 1980

SECTION 12 PDR4130

After all I/O operations are completed, exclusive use is relinquished
by the command:

UNASSIGN device

device is the same mnemonic used in the ASSIGN command.

READING PUNCHED CARDS

Assign use of the parallel interface card reader by:

AS CRn -WAIT

To read cards from the card reader, load the card deck into the device
and enter the command:

CRMPC deck-image [-PRINT] [-CR0] [-CR1]

deck-image The pathname of the f i l e into which the card
images are to be loaded.

-PRINT Print card while reading.

-CR0 Use device CR0 (default) .

-CR1 Use device CR1.

Source deck header control cards are set up as follows:

Source deck Columns 1 and 2 of
representation deck header card

BCD $6
EBCDIC $9
ASCII no header card

Reading continues until a card with $E in columns 1 and 2 are
encountered (end of deck); control returns to PRIMOS and the file
is closed. If the cards are exhausted (or the reader is halted by
the user) , control returns to PRIMOS but the file is not closed.
If more cards are to be read into the file, the reader should be
reloaded; reading is resumed by the command START at the terminal.

Close the file with the command:

CLOSE ALL

or

CLOSE deck-image

REV. 0 1 2 - 2

PDR4130 USING TAPES AND CARDS

Example of card reading session:

OK, AS CR -WAIT
OK, CRMPC o l d - p r o g r a m - 1
OK, UN CR0
OK,

If a serial interface card reader is used, the process is similar,
with slightly different reader commands:

OK, AS CARDR -WAIT
OK, CRSER old-prog ram-2
OK, UN CARDR
OK,

CARDR may be abbrev ia ted to CAR.

READING PUNCHED PAPER TAPE

F i r s t load tape i n to r e a d e r ; then a s s ign tape r e a d e r . Source
programs punched on paper t ape in ASCII r e p r e s e n t a t i o n can be read
in to a d i sk f i l e with t he E d i t o r .

OK, AS PTR -WAIT Assign t ape reader
OK, ED Invoke Editor
INPUT
(CR) Switch to EDIT mode
EDIT
INPUT (PTR) Input from tape reader
EDIT Tape i s being read
FILE filename F i l e input under filename
OK, UN PTR Uhassign tape reader

MAGNETIC TAPE UTILITIES

The Prime magnetic t ape u t i l i t i e s (MAGNET, MAGRST, and MAGSAV)
al low the d u p l i c a t i o n of magnetic t a p e s , the t r a n s f e r of f i l e s from
d isk to tape and v i c e - v e r s a , and the t r a n s f e r and t r a n s l a t i o n of
t apes in s e l e c t e d non-Prime formats to and from PRIMOS d i s k f i l e s .
All mag tape o p e r a t i o n s done with t he se u t i l i t i e s r e q u i r e t he
assignment of a t l e a s t one magnetic t ape d r i v e u n i t .

12 - 3 December 1980

SECTION 12 PDR4130

Assigning Tape Drives

Magnetic tape drive assignment can be set up at each installation
by the System Administrator in one of three ways:

• Each user can assign a tape drive from any terminal;
operator intervention is necessary only for processing
special requests. This is the default mode.

• Each user must send all assignment requests through the
operator, who controls all access to tape drives. 'Hie
operator then sends messages to the. user terminal indicating
the status of the assignment request.

• Tape drive assignment from any user terminal is strictly
forbidden. This feature is used to restrict access to tape
drives in security-conscious environments, or when the
operator is not available to process requests.

The ASSIGN Command Format

Users may assign magnetic tape drives in any one of three ways:

• By physical device number (pdn) :

ASSIGN MTpdn [-options]

• By logical device number (ldn):

ASSIGN MTX -ALIAS MTldn

• By logical device number plus characteristics:

ASSIGN MTX -ALIAS MTldn -options

Assigning a drive by physical device number requests that
particular drive. If the drive is busy, -WAIT queues the request.
Assigning a drive by logical device number says, "Give me any tape
drive, and call it number ldn." (The -ALIAS option supplies the
number.) Any free tape drive may then be assigned. If all devices
are busy, -WAIT queues a request for the first free device.
Assigning a drive by logical number plus characteristics asks for
any drive that can handle a particular type of tape (for example, a
9-track tape at 6250 bpi), and gives the drive a logical alias. In
all three cases, users will be told which physical device has been
assigned to them; they may refer to the device by either its
physical number or its logical alias. Additionally, ASSIGN allows
special requests to be made of the system operator; for example,
removing the WRITE-ring or mounting a particular tape. (This
version of the ASSIGN command applies only to mag tape drives;

REV. 0 1 2 - 4

PDR4130 USING TAPES AND CARDS

other peripheral devices like the paper tape reader (PTR) cannot be
assigned with the options described here.) The command format,
complete with optional arguments, is:

ASSIGN JMTpdn [-ALIAS MTldn] | [-option(s)]
(MTX -ALIAS MTldn J

The arguments and options are:

Argument Description

MTpdn

MTX

-ALIAS MTldn

-WAIT

-TPID id

Mag tape (MT) unit number from 0 to 7,
inclusive. pdn is the physical device
number assigned to each drive at system
startup. Numbers can be obtained from the
system operator.

Tells the operator to assign "any available
drive"; MUST be accompanied by -ALIAS
MTldn, which assigns a number (alias) to the
drive for reference purposes. See below.
The actual drive assigned depends on any
other options which appear on the command
line.

The logical drive number, from 0 to 7,
inclusive, ldn is a user-specified number
assigned to a particular physical drive
unit; used as an alias for the pdn in
subsequent mag tape operations. Logical and
physical device numbers can be used
interchangeably in MAGNET, MAGSAV and MAGRST
dialogs; however, to avoid confusion, give
MAGRST/MAGSAV the logical device number, if
you're using aliases. See Note below.

Indicates user is willing to wait until
requested drive is available.

Requests the operator to mount a particular
reel of tape, identified by a tape id;
requires operator intervention. id is a
list of tape identifiers (arguments)
describing a particular reel of tape, and/or
type of tape drive (name, number, etc.).
Identifiers may not begin with a hyphen (-)
which is a reserved character indicating the
next control argument on the ASSIGN
statement line.

12 December 1980

SECTION 12 PDR4130

-RINGON
-RINGOFF

Protection rights may be specified by:

RINGON Read and write permitted,
or
RINGOFF Read only; write-protection

in effect.

-800BPI
-1600BPI
-6250BPI

-TTRK
-9TRK

Requires operator intervention
or replacement of write-ring.

for removal

Particular tape density settings are
requested with these options. Most drives
can handle 800 and 1600 bpi settings.
Requires operator intervention.

Indicates 7- or 9-track tape drive;
default is 9-track. Requires operati
intervention if -7TRK is specified.

Using the -ALIAS Option

The -ALIAS option is useful in several general situations:

• When you request special features and do not know which
available drive meets the stated requirements

• When you are writing a command file to perform mag tape
operations and have no way of knowing which tape drive is
available at a given time

• When you know the actual pdn of the drive being assigned but
prefer to give it another number, for ease of reference, or to
avoid confusion

Once an alias has been assigned, either the physical or logical device
number can be used to refer to the drive in question in subsequent mag
tape drive operations like MAGSAV. The logical device number is
"mapped into", or associated with the physical device number in an
internal table.

With the MTX option, command files which perform mag tape operations
can be executed independently of a particular drive's availability.
The arbitrary number assigned the tape drive with MTX -ALIAS can be
used in writing responses to the dialog of the utility invoked by the
command file.

REV. 0 12 -

PDR4130 USING TAPES AND CARDS

Note

MAGSAV and MAGRST ask the user for the device number of the
drive on which a tape is mounted. Both dialogs assume the
number given is a logical device number: consequently, the
internal list of logical device numbers is searched first. If
a match is found, MAGSAV/MAGRST will interact with the tape
mounted on the corresponding physical drive. Suppose the user
first assigns physical device MT0 as logical MT1, then assigns
physical MT1 as logical MT0. If the user answers "1" to the
"TAPE UNIT:" prompt of MAGSAV (or MAGRST) , the utility assumes
that "1" is a logical device number (ldn). Thus, it attempts
to read from or write to, as the case may be, the tape mounted
on physical device MT0, which the user previously assigned as
logical MT1.

USING ASSIGN

Ihe following examples illustrate some uses of ASSIGN. In all cases,
the distinction between what the user can do without operator
intervention and what must be done with operator assistance is
indicated.

Default Assignment

The standard form of assignment does not require operator intervention
on systems with the default configuration (user-privileges allowed) .
Fbr example:

OK, AS MT1
Device MT1 Assigned.

Mag tape drive MT1 i s assigned. (1 i s the physical device number.) If
the device i s cur ren t ly assigned to another user or process, t h i s
message appears:

The device i s in use. (ASSIGN)
ER!

On systems where a l l mag tape requests are monitored, the request above
would be acknowledged with the same message, but a s l i gh t delay would
be observed. The operator has to answer each request , which r e s u l t s in
a delayed response a t the user terminal.

1 2 - 7 December 1980

SECTION 12 PDR4130

Logical Aliases

Logical device numbers can be assigned by the user without operator
assis tance on default privi lege systems, providing tha t no other
special requests are made on the same ASSIGN command l i n e :

OK, AS MT1 -ALIAS MT0
Device MT1 Assigned.

Note tha t the physical , not the log ica l , device number i s returned.

Physical device MT1 can now be referred to as logical device MT0.
l dn ' s and pdn's are associated in ternal ly in a special tab le and can be
used interchangeably. If no ldn a l i a s i s requested, the defaul t
logical device number i s the same as the physical device number of the
d r ive . Tne STAT DEV command l i s t s the physical - to- logical number
correspondence:

OK, STAT DEV

DEVICE USRNAM USRNIW LDEVICE
MT1 DOUROS 7 MT0

If no logical alias had been requested, the LDEVICE entry- would be
identical to the DEVICE entry; in this case, MT1.

Aliases in Operator Mode

Similarly, logical aliases can be requested on operator-controlled
systems. Again, the pdn of the assigned device will be displayed at
the user's terminal with a message of this general form:

Device MTpdn Assigned.

pdn varies with the actual physical device chosen by the operator.

Special Requests

If control arguments for special requests appear on the ASSIGN command
line, then the operator must intervene, even on systems with default
user privileges. For example, all ASSIGN commands with the MTX option
must be handled by the operator:

ASSIGN MTX -ALIAS MT4

Tne operator is requested to assign any available tape drive as logical
device 4. A message is displayed at the user's terminal, indicating
which physical drive has been assigned.

REV. 0 1 2 - 8

PDR4130 USING TAPES AND CARDS

The ope ra to r must a l s o i n t e rvene i f a user wants a t a p e mounted, or i f
a p a r t i c u l a r d e n s i t y s e t t i n g i s r e q u i r e d , or i f a p a r t i c u l a r d r i v e i s
needed (for i n s t a n c e , t o read a t ape recorded a t 6250 bpi) . Fbr
example:

AS MTX -ALIAS MT3 -TPID POWER -9TRK -RINGOFF -6250

The ope ra to r i s reques ted t o mount t h e "POWER" t a p e on a 9 - t r ack d r i v e
t h a t can handle 6250 b p i . In t h i s c a s e , "POWER" i s t he name w r i t t e n on
the t ape r e e l to i d e n t i f y the tape and i s no t n e c e s s a r i l y t he recorded
l a b e l . In a d d i t i o n , t he user wants w r i t e - p r o t e c t i o n and i s a s s ign ing
an a l i a s of MT3 (ldn) to whatever dev ice t he o p e r a t o r chooses . This
r e q u e s t , i f p rocessed , might be acknowledged with t h i s d i s p l a y :

Device MT0 Assigned.

Operator Not Avai lable

If the ope ra to r i s no t a v a i l a b l e to handle r e q u e s t s , any a t t empt by a
user to a s s i g n a mag t a p e d r i v e w i l l r e s u l t in t h i s message:

OK, AS MT1
No MagTape Assignment Permi t t ed . (AS)

ER!

Operator Can ' t Handle

If any r eques t cannot be handled by the ope ra to r for any r e a s o n , t h e
following message appears a t the t e r m i n a l :

OK, AS MTX -ALIAS MT0 -6250
MagTape Assignment Request Aborted (ASSIGN)

ER!

Improper Use of ASSIGN

Should an improper form of t h e ASSIGN command be i s s u e d , an e r r o r
message a p p e a r s , a s well a s the proper command format , complete with
a l l t he o p t i o n s . For example:

OK, AS MT1 -ALIS MT0 -RINGOFF
"-ALIS" not implemented or improper use of argument. (ASSIGN)
Usage: ASSIGN MTn [-ALIAS MTm] [<options>]

ASSIGN MTX -ALIAS MTn [<options>]
Opt ions: [-TPID <id>] [-7TRK | -9TRK] [-RINGON | -RINGOFF]

[-6250BPI | -6250 I -1600BPI | -1600 | -800BPI | -800]
ER!

1 2 - 9 December 1980

SECTION 12 PDR4130

RELEASING A TAPE DRIVE

When a user completes a mag tape operation, the mag tape dr ive should
be released for general _>use. Simply issue the UNASSIGN ĉommand with
one of the indicated arguments:

UNASSIGN { MTpdn I
1 -ALIAS MTldnj

The -ALIAS option can be used to unassign a dr ive whether or not the
user assigned an a l i a s to the dr ive . The ldn argument value can be
e i ther the user-chosen logical device number, i f one was assigned, or
the default ldn, which i s ident ical to the pdn.

Who Can UNASSIGN a Drive

A tape drive can be unassigned only by:

• The user who assigned i t (on default-privi leged systems)

• The system operator

The system operator can unassign any drive using the pdn argument; the
"-ALIAS ldn" option can be used only if the drive is owned by (i.e.,
was previously assigned by) the operator.

If an operator UNASSIGNs a user-dedicated tape drive, no message will
appear at that user's terminal. Should the user subsequently attempt
to UNASSIGN the same device, an error message will be displayed.

MAG TAPE OPERATIONS

Each magnetic tape utility performs one or more specific functions.

MAGNET (for both Prime and'̂ fton-Prime-format files and tapes)

• Reading files from tape to disk (with optional unblocking or
character translation)

• Writing files from disk to tape (with optional blocking or
character translation)

• Copying files from one tape to another

• Translation from EBCDIC or BCD to ASCII during READ or WRITE
operations (optional)

• Copying binary files

REV. 0 1 2 - 1 0

PDR4130 USING TAPES AND CARDS

MAGRST (Prime-format t apes only)

• Restoring Prime-format f i l e s , d i r e c t o r y - t r e e s o r d i s k volumes
from tape

MAGSAV (Prime-fqrmat f i l e s only)

• Archiving Prime-format f i l e s , d i r e c t o r y - t r e e s or d i s k volumes to
tape

The d i a l o g s a s s o c i a t e d with t h e s e u t i l i t i e s a r e summarized below. Fbr
complete informat ion on these u t i l i t i e s , see The PRIMPS Commands
Reference Guide.

THE MAGNET UTILITY

The f ive MAGNET o p t i o n s perform the following tape o p e r a t i o n s :

Option Function

COPY Copies f i l e s from one tape
to another

POSITION P o s i t i o n s t ape to a f i l e

or record

QUIT Returns to PRIMOS

READ Reads f i l e s from tape to d i s k

WRITE Wri tes a f i l e from d i s k to t ape

MAGNET Requirements

Acceptable Tapes: MAGNET accep t s on ly unlabeled t a p e s with
f ixed- l eng th r eco rds and o p t i o n a l b lock ing . They may be 7 - or 9 - t r a c k ,
and may be w r i t t e n in ASCII, BCD (7- t rack o n l y) , BINARY or EBCDIC
format. They may have a maximum of 10K b y t e s / t a p e r e c o r d , and a
maximum of 2K b y t e s / d i s k r eco rd .

Tapes which meet t h e s e s t anda rds may be r e a d , w r i t t e n or copied with
MAGNET. T rans l a t i on from/to ASCII, BCD, BINARY and EBCDIC can be done
dur ing READ or WRITE o p e r a t i o n s . Record b locking/unblocking i s a l s o
p o s s i b l e dur ing t h e s e o p e r a t i o n s .

ANSI l e v e l 1 volume l a b e l s of c e r t a i n l abe led t a p e s can be read with
the LABEL command. LABEL can a l s o be used to w r i t e a l a b e l on an
unlabeled t a p e . See The PRIMOS Commands Reference Guide for d e t a i l s .

12 - 11 December 1980

SECTION 12 PDR4130

Reading/Writing Mag Tapes; Files may be read or written (saved) to
tape with the READ and WRITE options of MAGNET, respectively. Tapes
created with MAGNET cannot be restored with MAGRST, so once you save
files to tape with MAGNET WRITE, they must be read back with MAGNET
READ. See The PRIMPS Commands Reference Guide for complete details on
the MAGNET READ and WRITE options.

Copying Tapes: The COPY option allows files to be copied from one tape
to another. No character translation is provided for during this
operation. Tapes may also be copied in their entirety with this
option, as explained below.

Reading or Writing Magnetic Tape with MAGNET

Once the tape drive has been assigned and the tape mounted, users may
read tapes with the READ option of PRIMOS' MAGNET utility. When the
command MAGNET is given, an interactive dialog begins. (The same
dialog, with the WRITE option, allows users to write tapes.)

OKj. MAGNET

[MAGNET rev 18.1]

OPTION: READ

MTU# = unit-number [/tracks]

unit-number i s the number of the magnetic tape drive uni t which was
previously assigned.

t racks i s e i ther 7 or 9; if t h i s parameter i s omitted, 9-track tape i s
assumed.

MAGNET then asks a se r i es of questions about the tape format.

MTFILE# = tape-file-number

tape-file-number i s the f i l e number on the tape . A posi t ive integer
causes the tape to be rewound and then positioned to the f i l e number;
a 0 causes no repositioning of the tape.

LOGICAL RECORD SIZE = n

This i s the number of bytes / l ine image; normally t h i s i s 80 for a
source program.

REV. 0 1 2 - 1 2

PDR4130 USING TAPES AND CARDS

BLOCKING FACTOR = b lock ing - fac to r

b lock ing - fac to r i s t he number of l o g i c a l r eco rds per t a p e record,
(Maximum s i z e of a t ape record i s 10,000 c h a r a c t e r s .)

ASCII, BCD, BINARY, OR EBCDIC? d a t a - r e p r e s e n t a t i o n

d a t a - r e p r e s e n t a t :

ASCII

BCD

BINARY

EBCDIC

ion ac t i on

Transfer

Trans la te to ASCII from 7 - t r ack
tape

Transfer verbat im

Trans la t e to ASCII

FULL OR PARTIAL RECORD TRANSLATION? answer

answer i s FULL or PARTIAL. The ques t ion i s asked o n l y for BCD or
EBCDIC r e p r e s e n t a t i o n s . P a r t i a l t r a n s l a t i o n a l lows s p e c i f i e d b y t e s in
the record to be t r a n s f e r r e d to d i sk without t r a n s l a t i o n to ASCII. The
p a r t i a l op t ion i s useful when t r a n s f e r r i n g da t a f i l e s wi th b i n a r y or
packed decimal EBCDIC d a t a , However, almost a l l source programs w i l l
be t r a n s f e r r e d with the f u l l o p t i o n .

OUTPUT FILENAME: fi lename

filename i s the name of t h e f i l e in the UFD in to which t he magnetic
tape i s to r e a d . If the filename a l r eady e x i s t s in the UFD, t h e
q u e s t i o n :

OK TO DELETE OLD filename? answer

w i l l be asked . A NO w i l l cause the r eques t for an ou tpu t f i lename to
be r e p e a t e d . A YES w i l l cause t he t r a n s f e r to beg in ; upon comple t ion ,
the following message w i l l be p r in t ed o u t :

DONE, t a p e - r e c o r d s RECORDS READ, d i s k - r e c o r d s DISK RECORDS OUTPUT
OK,

Use of t he t ape d r i v e u n i t should then be r e l i nqu i shed by UN MTpdn or
UN -ALIAS l d n .

DUPLICATING MAGNETIC TAPES

MAGNET can copy and read e i t h e r Prime or non-Prime t a p e s . MAGSAV
c r e a t e s Prime-format t a p e s which can then be read by MAGRST.

12 - 13 December 1980

SECTION 12 PDR4130

Copying Tapes with MAGNET: If t h e r e a r e two tape d r i v e s a v a i l a b l e for
u s e , t h e COPY op t ion of MAGNET can be used to g e n e r a t e d u p l i c a t e s of
magnetic t a p e s . This op t ion cop ies one t ape d i r e c t l y to a n o t h e r . The
MAGNET u t i l i t y may be used for t apes in Prime or non-Prime format .

The e s s e n t i a l s t e p s in t he copy procedure a r e :

1. Assign two magnetic tape d r i v e u n i t s from t e r m i n a l .

2 . Mount the FROM tape (o r ig ina l) and TO t ape (blank) on t h e i r
r e s p e c t i v e d r i v e u n i t s .

3 . Use COPY op t ion of MAGNET: supply FROM and TO t a p e u n i t
numbers, s t a r t i n g f i l e number and number of f i l e s t o be cop i ed ,
a s requested by d i a log (see below) .

4 . Dismount both t apes and unassign t ape d r i v e s when EOT (end of
tape) message i s r e t u r n e d .

The MAGNET COPY Dialog: The COPY op t ion of MAGNET invokes the
following prompts. Expected user responses a r e o u t l i n e d oppos i t e
corresponding prompts.

Prompt

•FROM' TAPE:
MAGNETIC TAPE UNIT NUMBER=

STARTING FILE NUMBER=

Response

Enter number (ldn or pdn) of
mag t ape d r i v e on which
non-blank tape i s mounted.

Enter number of f i l e to be
copied; numbers correspond to
order in which f i l e s appear on
t a p e .

•TO' TAPE
MTU NUMBER= Enter number (ldn or pdn) of

mag tape d r i v e u n i t on which
blank t ape i s mounted.

STARTING FILE NUMBER= Enter p o s i t i o n on
f i l e w i l l r e s i d e .

tape where

NUMBER OF FILES TO COPY=

DONE

Enter number of files to be
copied. If copying entire
tape, enter a large number;
operation ceases when EOT is
reached.

This means the operation is
completed. The number of
files copied is printed and
control returns to PRIMOS.

REV. 0 12 - 14

PDR4130 USING TAPES AND CARDS

Copying Tapes with MAGRST/MAGSAV: Mien copying t a p e s saved with
MAGSAV, the MAGSAV/MAGRST u t i l i t i e s can be used to d u p l i c a t e t a p e s a s
fo l lows :

1. Assign a t ape d r i v e u n i t from the t e r m i n a l .

2. Mount FROM (o r i g i n a l) t ape on d r i v e u n i t .

3 . Copy tape to f i l e s on d i sk using MAGRST.

4 . Remove FROM t a p e and r ep l ace the TO (blank) t ape on d r i v e u n i t .

5 . Transfer f i l e s from d i s k t o TO tape using MAGSAV.

6. Dismount t ape and unassign d r i v e u n i t from t e r m i n a l .

Saving Disk F i l e s on Tape (MAGSAV)

The Magnetic Tape Save U t i l i t y w r i t e s PRIMOS f i l e s from d i s k t o a 7 - or
9- t rack magnetic t a p e . Several op t i ons may be s p e c i f i e d on t he MAGSAV
command l i n e :

-7TRK

-INC

-LONG

-UPDT

-TTY

-VAR

Uses 7 - t r ack
(9 - t r a c k) .

magtape format ins tead of d e f a u l t

I n d i c a t e s incremental dump. Only f i l e s and d i r e c t o r i e s
with DUMPED switch s e t to 0 w i l l be saved .
(Default=save a l l) .

Se ts record s i z e t o 1024 words (Default=512) .

I n d i c a t e s upda te . DUMPED switch i s s e t for f i l e s and
d i r e c t o r i e s saved from d i s k to t a p e .

MAGSAV t a k e s t ape u n i t number from te rmina l and a l l
o t h e r informat ion from c u r r e n t i npu t s t r eam.

Allows v a r i a b l e - l e n g t h r e c o r d s , up to 2048 words;
o v e r r i d e s -LONG o p t i o n . Improves speed of MAGSAV
o p e r a t i o n . If s e l e c t e d , the record s i z e i s p r i n t e d
a f t e r the REV stamp of t he MAGSAV d i a l o g .

MAGSAV Dialog Summary: The MAGSAV d ia log i s summarized below.
Suggested user r esponses a r e i n d i c a t e d .

Prompt Response

TAPE UNIT (9 TRK) : Enter phys ica l or l o g i c a l t a p e d r i v e
number, from 0-7 . If t he - 7 TRK op t ion was
no t s p e c i f i e d , (9 TRK) i s d i s p l a y e d .

12 - 15 December 1980

SECTION 12 PDR4130

ENTER LOGICAL
TAPE NUMBER:

TAPE NAME:

DATE:

REV. NO. :

NAME OR COMMAND:

Enter number, from 1 to n, of desired
logical tape (see Note, below); tape is
then rewound and positioned. Specify 0 if
tape is already positioned as desired.

Specify a name or identifier for this tape;
maximum of 6 characters.

Specify date in format: mm dd yy. Default
(CR) is system-supplied date.

Biter arbitrary number, or (CR) .

Possible responses include:

pathname Name of file or directory to
saved.

be

MFD Saves en t i r e disk volume.

* Saves current d i rec tory ; up to
13 (nested) leve ls can be saved
a t a time.

$A directory [ldisk] : Changes home UFD to
directory. If ld isk number i s not
specified, only the local disk i s searched
for directory (defaul t) . pathnames are
not supported.

$I[filename]n: Prints a t terminal an
index of f i l e s and d i r ec to r i e s saved from
from disk to tape . Index can be writ ten
to a f i l e if a filename i s provided, n
indicates number of l eve l s in t r ee
s tructure hierarchy to be included in
index.

$Q Terminates logical tape
returns to PRIMOS.

and

$R Terminates logical tape, rewinds
tape and returns to PRIMOS.

$INC ON Turns incremental save option on
OFF or off; same as -INC command

line option, above.

REV. 0 12 - 16

PDR4130 USING TAPES AND CARDS

Note

A "logical tape" results from single invocation of MAGSAV. It
is a unique entity, with its own header, etc. It may be a
portion of a physical tape, or a complete physical tape; or it
may span one or more physical tapes. A single physical tape
may contain several logical tapes, each of which is identified
by number.

Sample MAGSAV Session: Below is an example taken from a terminal
session during which a disk file (TAPE.EX) was saved on tape. If a
carriage return (CR) is given in response to the DATE and REV NO
prompts, as shown below, the system will supply the current date and
zero rev number. Notice that a logical device number (ldn) can be
supplied as a response to the "TAPE UNIT" prompt as in this example.
Either a pdn or an ldn, (if one has been assigned), can be supplied.

OK, AS MT1 -ALIAS MT7
Device MT1 Assigned.
OK, STAT DEV

DEVICE USRNAM USRNUM LDEVICE
MT1 DOUROS 7 MT7

OK, MAGSAV
REV. 18.1
TAPE UNIT (9 TRK): 7
ENTER LOGICAL TAPE NUMBER: 0
TAPE NAME: MAGTAP
DATE (MM DD YY) : (CR)
REV NO:(CR)
NAME OR COMMAND: TAPE.EX
NAME OR COMMAND: $Q
OK,

Restoring Fi les to Disk (MAGRST)

The Magnetic Tape Restore U t i l i t y res tores f i l e s , d i rec to ry , t r e e s and
pa r t i t ions from a magnetic tape (7- or 9-track) to a d i sk . All
information i s restored to the di rectory to which the user i s cur ren t ly
attached. MAGRST can read tapes of any record s i z e , with fixed or
variable length records (up to 6144 words), making i t compatible with
MAGSAV.

The command format i s :

MAGRST [-7TRK] [-TTY] (option specif ies 7-track t ape : default=9)

MAGRST Dialog Summary: The MAGRST u t i l i t y displays a s e r i e s of
questions and messages which are summarized below, along with
appropriate responses and descr ip t ions . If the -TTY option i s
specified, MAGRST takes the unit number from the terminal , but takes

12 - 17 December 1980

SECTION 12 PDR4130

all other information from its
command file or a CPL file.)

Prompt/Message

YOU ARE NOT ATTACHED
TO AN MFD

TAPE UNIT (9 TRK) :

(TAPE NOT AT LOAD POINT)

ENTER LOGICAL TAPE NUMBER:

c u r r e n t input s t r eam. (This might be a

Response/Descr ipt ion

This message i s r e tu rned on ly i f
t he user i s not a t t ached to an
MFD.

Enter phys i ca l or l o g i c a l dev ice
number; from 0-7 . The (9 TRK)
message i s d i sp layed i f t he -7
TRK op t ion was no t spec i f i ed on
the MAGRST command l i n e .

This message appears i f t he t ape
i s not pos i t ioned to t he
beginning of the t a p e .

If t ape i s d iv ided i n t o s e v e r a l
l o g i c a l u n i t s , e n t e r l o g i c a l
tape number from 1 to n . Tape
i s pos i t i oned t o s p e c i f i e d
l o g i c a l t a p e . Enter 0 i f t ape
i s a l r e a d y pos i t ioned a s
d e s i r e d . (No a c t i o n i s taken in
t h i s c a s e .) See a l s o Nate ,
below.

NAME: tape-name

DATE (MM DD YY): t ape -da t e

REV NO: number

REEL NO: reel-number

READY TO RESTORE:

MAGRST displays the name of the
logical tape currently
positioned to; names are
provided during MAGSAV dialog.

MAGRST displays date on tape was
recorded. Supplied during
MAGSAV.

MAGRST displays arbitrary number
specified during MAGSAV.

MAGRST displays appropriate
reel-number of tape.

Enter one of the following
options:

YES: Restores entire tape and
returns to PRIMOS.

NO: Causes first prompt to be
reissued.

REV. 0 12 - 18

PDR4130 USING TAPES AND CARDS

$1 [fi lename] n : P r i n t s t ape
index to n l e v e l s a t t e rmina l
during r e s t o r e . Index can be
o p t i o n a l l y saved to i n d i c a t e d
f i lename.

NW [f i l e n a m e] [n] : P r i n t s n
l e v e l index"a t t e rmina l bu t DOES
NOT UPDATE d i sk because no f i l e s
a r e r e s t o r e d . Op t iona l ly s t o r e s
index in f i l ename.

PARTIAL: Res tores o n l y c e r t a i n
f i l e s and d i r e c t o r i e s .
Pathnames a r e en te red in
response to "TREE NAME:"
prompt.

_$ A d i r e c t o r y [l d i s k] : Changes
home UFD to d i r e c t o r y . If l d i s k
number i s not s p e c i f i e d , l o c a l
d i sk i s searched for d i r e c t o r y .

TREE NAME: This prompt i s r e tu rned when
PARTIAL op t ion i s s p e c i f i e d .
Respond with one of t h e
fo l lowing:

pathname: Names f i l e or
d i r e c t o r y to be r e s t o r e d .
pathname should no t i nc lude name
of d i r e c t o r y t o which user was
a t t ached when saving f i l e or
d i r e c t o r y , except when a t t a ched
to an MFD. If , for example, a
f i l e , f i l e 2 , was saved from
UFD=TOP, and i t s pathname i s :
T0P>MID>file2, i t can be
r e s to red with the pathname:
"MID>file2", but NOT with the
pathname: "TOP>MID>file2".

(CR) : Terminates MAGRST d i a log
by i n d i c a t i n g end of treename
l i s t ; t ape i s r e a d , and c o n t r o l
r e t u r n s to PRIMOS.

12 - 19 December 1980

SECTION 12 PDR4130

Note

A "runaway" tape condition can occur if there i s only one
logical tape on the currently mounted reel of tape and the
user specif ies a number greater than 1 in response to the
LOGICAL TAPE NUMBER prompt. If t h i s happens, MAGRST will
search endlessly for the non-existent logical tape(s) and
wil l consequently be unable to read the end-of-tape marker.
The drive must be unassigned to abort the unsuccessful
search.

When an unrecoverable error i s encountered during an attempted MAGRST
operation, an error message i s displayed. Recoverable e r rors are
logged and a t o t a l i s displayed when the end of the logical or physical
tape i s reached.

Sample MAGRST Session: The following example represents the dialog
necessary to res tore a f i l e from tape to d isk . The f i l e saved in the
previous MAGSAV sample session (TAPE.EX) i s used in t h i s example a l s o .

OK, MAGRST
REV. 18.1
YOU ARE NOT ATTACHED TO AN MFD
TAPE UNIT (9 TRK):0
ENTER LOGICAL TAPE NUMBER: 1
NAME: MAGTAP
DATE(MM DD YY): 08-31-79
REV NO: 0
REEL NO: 1
READY TO RESTORE: PARTIAL
TREE NAME: TAPE.EX
TREE NAME:(CR)
*** STARTING RESTORE ***
*** END LOGICAL TAPE ***
*** RESTORE COMPLETE ***
OK,

REV. 0 1 2 - 2 0

PDR4130 USING PRIMENET

SECTION 13

USING PRIMENET

INTRODUCTION

Many Prime installations contain two or more processors connected in a
network—a combination of communications hardware and PRIMOS software
called PRIMENET. In a network, the processor to which the user
terminal is connected is the local processor, while all other
processors are considered remote. On a system using PRIMENET, you can:

• LOGIN to a UFD on a remote system and use that CPU for
processing. (Only terminal I/O is sent across the network.)

• LOGIN to your local UFD, then ATTACH to directories on disk
volumes connected to any other processor in the network, and
access files in such directories. (File data is transmitted
across the network; the local CPU does the processing.)

• Use a PATHNAME with a subsystem (such as the EDITOR) to access a
file on a remote disk. For example:

ED <F0REST>0AK>BRANCH5>AC0RNLIST

• Use FUTIL to copy a file from a remote directory into a local
directory, avoiding the overhead of frequent remote access. For
example:

OK, f u t i l
[FUTIL rev 18.1]
> from <forest>oak>branch5
> copy acornlist

> quit

OK,

An overview of FUTIL is contained in Section 11.

REMOTE LOGIN

Each processor in the system is assigned a nodename during system
configuration. The nodename then identifies the processor for remote
logins. (Users can determine the nodenames of remote processors by
using the STATUS NETWORK command, explained below.) The format for
remote logins is:

LOGIN ufd-name [password] -ON nodename

1 3 - 1 December 1980

SECTION 13 PDR4130

If -ON nodename is omitted, an attempt is made to log into ufd-name on
the local system only. If nodename is the name of the local node, the
login attempt is done locally without the use of PRIMENET.

If the LOGIN command fails for any reason (e.g., Not found,
insufficient access rights), the user's PRIMENET connection is broken.
Input from the user's terminal is again processed by the local
processor; but the user is not logged in.

On a terminal logged in to a remote processor, the command LOGOUT logs
out the process, breaks the remote connection over PRIMENET, and
reconnects the terminal to its local system (not logged in). The
message:

WAIT . . .

DISCONNECTED FROM XXX
OK,

is displayed. All input characters typed between the LOGOUT command
and the response OK are discarded.

Network Status

The STATUS NETWORK command gives the names and states of all nodes in
the network:

OK, status net

RING NETWORK

NODE
SYSA
SYSB
SYSC
SYSD
SYSE
SYSG
SYSH

STATE
UP

UP
UP
UP
DOWN
DOWN.

OK,

This shows the s t a t e of a eight-node network as i t would be printed for
a local user on the SYSB node. The UP s t a t e means tha t the node i s
configured and functioning.

REV. 0 13

PDR4130 USING PRIMENET

ATTACHING TO REMOTE DIRECTORIES

Attaching to a remote directory is the same as attaching to a local
directory. You can give the name of the disk partition or logical disk
number (determined from a STATUS DISKS display) within the ATTACH
command, as in:

ATTACH <SHARK>JAWS

Or you may give the UFD-name by itself. PRIMOS then searches each
logical disk beginning with disk 0, and attaches you to the first UFD
of that name it finds.

Status Disks

Users can discover the names and numbers of logical disks on remote
systems by using the STATUS DISKS command. For example, suppose we
wanted to attach to the UFD CORAL on node SYSC, but had forgotten the
name of the disk partition on which that UFD resided. We could
accomplish the ATTACH as follows:

OK, STATUS DISKS

DISK LDEV PDEV SYSN
STATS
FIELDS
MISCEL
FOREST
REEFS
LAGOON
SHARK
SHARK2
CLOUDS
CLIFF1

0
1
2
3
4
5
6
7
12
13

3462
460

71063
71061
460
460

12060
52061
460

12460

SYSC
SYSD
SYSD
SYSD
SYSE
SYSE

CLIFF2 14 61461 SYSE
AERIE 15 462 SYSE
ROCK 23 21460 SYSA
FALCON 24 71061 SYSA
NEST1 25 660 SYSA
NEST2 26 10660 SYSA

OK, ATTACH <REEFS>CORAL
OK,

In the STATUS DISKS printout, DISK is the name of the logical disk,
LDEV is the logical disk number, PDEV is the physical disk identifier,
and SYSN is the nodename.

1 3 - 3 December 1980

SECTION 13 PDR4130

ACCESSING REMOTE SYSTEMS AND NETWORKS

You may connect to any system on the Public Data Network by using the
NETLINK command. This means that systems other than Prime systems and
software other than PRIMENET software may be accessed. Other sites or
other networks as well as jobs within these other sites and networks
may be accessed.

Several NETLINK commands let you use these other systems and networks.
There are basic commands and advanced commands. Basic commands allow
you to enter and exit the remote systems. Advanced commands allow you
to:

• Transfer files across networks

• Set data transmission characteristics

• Print the status of your connection

• Connect to and use up to four different remote systems at the
same time

• Specify the various fields of the connect packet when data
transmission characteristics of a foreign system differ from
that of Prime's.

Only NETLINK's basic usage will be presented here. For a list of all
NETLINK commands and error messages see The PRIMENET Guide.

NETLINK Usage

The basic steps to using NETLINK are as follows:

1. Enter NETLINK Command Mode by issuing the

NETLINK

command. When Command Mode is entered, the @ prompt appears.

2. Connect to the remote system by issuing the

C address

command, address is either the host address assigned by the
Public Data Network or a PRIMENET system name. For example,
617, 74, and N0DE1 are all valid addresses.

When a connection has been established, the message:

address Connected

appears.

REV. 0 13

PDR4130 USING PRIMENET

3. Login to the system as you would normally, entering any
validation codes or passwords as required.

4. Cnce you finish a terminal session, logout as you would
normally. The message:

address Disconnected

appears. When a connection to a remote host has been
terminated by logging out, Command Mode is re-entered and the @
appears. You may now connect to another site or return to
PRIMOS.

5. lb return to PRIMOS enter the

QUIT

command.

NETLINK Example

Below is an example of a basic terminal session. User responses are
underlined.

OK, NETLINK
[NETLINK Version 1.0]

@ C N0DE1
N0DE1 connected

PRIMENET 18.1 N0DE1
LOGIN HOBBIT

PRIMOS Version 18.1

HOBBIT (56) LOGGED IN AT 11:43 091379

Enter validation code: SHIRE

continue with normal terminal session
•

OK, LOGOUT
HOBBIT (56) LOGGED OUT AT 11:44 091379

TIME USED = 0:01 0:00 0:01

WAIT . . .

N0DE1 DISCONNECTED

@ QUIT

OK,

1 3 - 5 December 1980

PDR4130 SUBROUTINE LIBRARIES

SECTION 14

SUBROUTINE LIBRARIES

This s e c t i o n l i s t s the subrou t ines a v a i l a b l e i n :

• The App l i ca t ions L i b r a r i e s ; VAPPLB (V-mode) and APPLB (R-mode)

• The Search and Sort L i b r a r i e s : VSRTLI and VMSORTS (V-mode),
SRTLIB and MSORTS (R-mode)

• The Operating System Library

I t i s meant s o l e l y a s a c h e c k l i s t , to t e l l you what s u b r o u t i n e s a r e
a v a i l a b l e in t he se l i b r a r i e s . The PRIMPS Subrout ines Reference Guide
t e l l s you how to use them. Thus, i f you wanted to know whether a
c e r t a i n s o r t r o u t i n e was a v a i l a b l e , you would look for i t h e r e . Having
found i t , you would c o n s u l t The PRIMPS Subrout ines Reference Guide for
fu l l d e t a i l s on how to c a l l and use i t .

APPLICATIONS LIBRARY

The a p p l i c a t i o n s l i b r a r y prov ides programmers with e a s y - t o - u s e
funct ions and s e r v i c e r o u t i n e s f a l l i n g between ve ry h i g h - l e v e l
c o n s t r u c t s and very low- leve l systems r o u t i n e s . The a p p l i c a t i o n s
l i b r a r y i s loca ted in UFD=LIB in the f i l e s APPLIB (R-mode programs) and
VAPPLB (V-mode programs) . All r o u t i n e s in VAPPLB a r e pure procedure
and may be loaded i n t o the shared por t ion of a shared p rocedure . The
a p p l i c a t i o n s l i b r a r y should be loaded before loading the FORTRAN
l i b r a r y .

Programs using the a p p l i c a t i o n s l i b r a r y sub rou t i ne s must de f ine the
va lues of t he keys used in t he se r o u t i n e s . This d e f i n i t i o n i s
performed by p lac ing t h e i n s t r u c t i o n $INSERT SYSCOM>A$KEYS in each
module which uses any of these s u b r o u t i n e s .

The a p p l i c a t i o n s r o u t i n e s may be used a s func t ions or a s subrou t ine
c a l l s as d e s i r e d . The funct ion usage g i v e s a d d i t i o n a l in fo rmat ion .
The type of va lue of the funct ion (LOGICAL, INTEGER, e t c .) i s
spec i f i ed for each func t ion .

The a p p l i c a t i o n s l i b r a r y sub rou t ines may be grouped by t h e i r f u n c t i o n s :

F i l e System

TEMP$A, OPEN$A, OPNP$A, OPNV$A, OPVP$A, CLOS$A, RWND$A, GEND$A, TRNC$A,
DELE$A, EXST$A, UNIT$A, RPOS$A, POSN$A, TSCN$A.

1 4 - 1 December 1980

SECTION 14 PDR4130

String Manipulation

FILL$A, NLEN$A, MCHR$A, GCHR$A, TREE$A, TYPE$Af MSTR$A, MSUB$A, CSTR$A,
CSUB$A, LSTR$Af LSUB$A, JSTR$A, FSUB$A, RSTR$A, RSUB$A, SSTR$A, SSUB$A

User Query

YSNO$A, RNAM$A, RNUM$A

System Information

TIME$A, CTIM$A, DTIM$A, DATE$Af EDAT$Ar DOFY$A

Conversions

ENCD$A, CNVA$A, CNVB$Af CASE$Af FDAT$Af FEDT$Ar FTIM$A

Mathematical Routines

RNDI$A, RAND$A

Parsing

CMDL$A

A brief description of these routines follows, in alphabetical order.

CASE$A

Converts a character string from uppercase to lowercase or vice versa
and returns .TRUE, if operation succeeds.

CI£»S$A LOGICAL

Attempts to close a file by the file unit number on which it was
opened. Reports on success or failure of attempt.

CMDL$A LOGICAL

Parses a PRIMOS-like command line and returns information for each
-keyword (and optional argument) entry in the line (one entry is
returned per call).

REV. 0 14

PDR4130 SUBROUTINE LIBRARIES

CNVA$A LOGICAL

Converts an ASCII digit string to a numerical value (INTEGER*4) for
binary, octal, decimal, and hexadecimal numbers. Reports whether the
conversion was made successfully or not.

CNVB$ INTEGER*2

Converts a number (INTEGERM) to an ASCII digit string for binary,
decimal, octal, and hexadecimal numbers. The function value is the
number of digits in the string (or 0 if the conversion is
unsuccessful).

CSTR$A LOGICAL,

Compares two character strings for equality and returns .TRUE, as the
function value if they are equal.

CSUB$A LOGICAL

Compares two substrings of character strings for equality and returns
.TRUE, as the function value if they are equal.

CTIM$A REAL*8

Returns the CPU time since login in centiseconds (argument returned)
and in seconds (function value).

DATE$A REAL* 8

Returns the system d a t e as DAY, MON DD 19YR (argument re tu rned) and as
MM/DD/YY (funct ion value) .

DELE$A LOGICAL

Attempts to d e l e t e a f i l e spec i f i ed by the f i l ename. If success fu l the
f u n c t i o n - i s .TRUE., o the rwise .FALSE..

DOFY$A REAL*8

Returns t h e day of t he year a s a 3 - d i g i t number (argument r e tu rned) and
as YR.DDD (funct ion v a l u e) . The l a t t e r i s s u i t a b l e for p r i n t i n g in
FORMAT F6.3-

1 4 - 3 December 1980

SECTION 14 PDR4130

DTIM$A REAL*8

Returns d i s k time s i n c e log in in cen t i seconds (argument re tu rned) and
in seconds (funct ion v a l u e) .

EDAT$A REAL*8

Returns t he d a t e as DAY, DD MON 19YR (argument re tu rned) and a s
DD/MM/YR (funct ion value) . This i s the European /mi l i t a ry format .

ENCD$A LOGICAL

Encodes a va lue in FORTRAN f l o a t i n g - p o i n t p r i n t format (Fw.d) and
r e p o r t s whether the encoding was successful or n o t .

EXST$A LOGICAL

Checks for the ex i s t ence of a f i l e spec i f i ed by name and r e p o r t s
whether the f i l e e x i s t s or n o t .

FDAT$A REAL*8

Converts t he d a t e - l a s t - m o d i f i e d (DATMOD) f i e l d of a d i r e c t o r y e n t r y to
DAY, MON DD YEAR (argument re turned) and MM/DD/YY (funct ion value) .

FEDT$A REAL*8

Converts the date-last-modified (DATMOD) field of a directory entry to
DAY, MON DD YEAR (argument returned) and MM.DD.YY (function value) .

FILL$A INTEGER

Fills a character string with a specified ASCII character.

FSUB$A LOGICAL

Fills a character substring with a specified character and returns
.TRUE, if successful.

FTIM$A REAL* 4

Converts the t ime- las t -modi f i ed (TIMMOD) f i e l d of a d i r e c t o r y e n t r y t o
HH:MM:SS (argument re turned) and decimal hours (funct ion v a l u e) .

REV. 0 1 4 - 4

PDR4130 SUBROUTINE LIBRARIES

GCHR$A INTEGER

Accesses a c h a r a c t e r in a spec i f i ed c h a r a c t e r p o s i t i o n . The funct ion
value i s the c h a r a c t e r in FORTRAN Al FORMAT (r i g h t padded with b l a n k s) .

GEND$A LOGICAL

Pos i t i ons a f i l e p o i n t e r opened on a spec i f i ed f i l e u n i t t o the
End-of -F i le . Tne funct ion va lue t e l l s whether the p o s i t i o n i n g was
successful or n o t .

JSTR$A LOGICAL

R i g h t - j u s t i f i e s or l e f t - j u s t i f i e s , or c e n t e r s a s t r i n g and r e p o r t s
whether the ope ra t i on i s s u c c e s s f u l .

LSTR$A

Locates a s t r i n g wi th in another s t r i n g ,
whether t he s u b s t r i n g was found or n o t .

LOGICAL

Tne funct ion va lue r e p o r t s on

LSUB$A

Locates one substring within another substring,
reports on whether the substring was found or not.

LOGICAL

The function value

MCHR$A INTEGER

Replaces a character in one array with a specified character from
another. The function value is the character moved in FORTRAN Al
FORMAT, right padded with blanks.

MSTR$A

Moves one string to another string,
number of characters moved.

INTEGER

The function value is equal to the

MSUB$A INTEGER

Moves a substring in a string into a substring in another string. The
function value is equal to the number of characters moved.

NLEN$A INTEGER*2

Returns the length (not including trailing blank) of string in a
buffer.

14 December 1980

SECTION 14 PDR4130

OPEN$A LOGICAL

Opens a file on a user- or system- specified file unit. The function
value reports whether the operation was successful or not.

OPNP$A LOGICAL

Gets a filename from the user terminal and opens that file on a
specified file unit. The function value reports whether the operation
was successful or not.

OPNV$A LOGICAL

Opens a file on a user- or system- specified file unit, verifies the
operation. If the file is in use, the operations are retried. The
function value reports on the ultimate success of the operations.

OPVP$A LOGICAL

Gets a file name from the user terminal and opens that file on a
specified file unit. The operations are verified . If the file is in
use the operations are re-tried. The function value reports on the
ultimate success of the operations.

POSN$A LOGICAL

Positions the pointer in the file open on a specified file unit. The
function value reports on the success of the operation.

RAND$A REAL* 8

Updates the seed of a random number generator. The old seed is passed
and a new seed returned. The function value is a uniform random number
between 0.0 and 1.0.

RNAM$A LOGICAL

Prints a prompt message at the terminal and accepts a, name from the
terminal. The function value reports on the validity of the name.

RNDI$A REAL*8

Generates the initializing seed for a random number generator. The
information returned is time of day in centiseconds (argument returned)
and in seconds (function value).

REV. 0 1 4 - 6

PDR4130 SUBROUTINE LIBRARIES

RNUM$A LOGICAL

Prints a prompt message at the terminal and accepts a number (octal,
decimal, or hexadecimal) string from the terminal. If successful the
value is returned in one of the subroutine arguments and the function
value is .TRUE..

RPOS$A LOGICAL

Returns the current absolute position of the pointer in the file opened
on a specified file unit. The function value reports on the success of
the operation.

RWND$A LOGICAL

Rewinds the file opened on the specified file unit. The function value
reports on the success of the operation.

TEMP$A LOGICAL

Opens a temporary file with a unique, name in the current UFD for
reading and writing on a user- or system- specified file unit. The
name is returned as an argument in the subroutine call. Tne function
value reports on the success of the operation.

TIME$A REAL* 8

Returns the time of day as HR:MN:SC (argument returned) and in decimal
hours (function value) .

TREE$A LOGICAL

Scans a string to check whether it is a valid pathname and, if so,
locates the final part (filename) of the name in the string. The
function value reports whether the test is successful or not.

TRNC$A LOGICAL

Truncates the file opened on a specified file unit. The function value
reports on the success of the operation.

1 4 - 7 December 1980

SECTION 14 PDR4130

TSCN$A LOGICAL

Scans the file system tree-structure (starting with the home directory)
to read UFDs and segment directory entries. Each call returns the next
file on the current level or the first file on the next lower level.
The function value is .TRUE, until an error occurs or an end of file
is reached.

TYPE$A LOGICAL

Tests a character string to see whether it can be interpreted as a
number (binary octal, decimal, or hexadecimal) or a name. The function
value reports whether the string meets the specified criterion.

UNIT$A LOGICAL

Tests whether any file is open on a specified file unit. The function
value reports whether the unit is in use or not.

YSNO$A LOGICAL

Prints a question at the user terminal which can be answered YES (or
OK) or NO. The function value is .TRUE, for YES (or OK) and .FALSE,
for NO. Any other answer causes the question to be repeated.

SORT AND SEARCH LIBRARIES

There are two classes of sorting subroutines available: disk sorts and
in-memory sorts. Disk sorts use the mass storage devices (disks) for
working space while the in-memory sorts put working information in the
user's address space. For complete details on the use of these
subroutines, see Tne PRIMOS Subroutine Reference Guide.

Disk Sorts

Disk sort subroutines are in the VSRTLI (V-mode) and SRTLIB (R-mode)
libraries. VSRTLI contains the following:

• ASCS$$ sorts or merges ASCII or binary files on any of the 12-
supported key types.

• SUBSRT sorts a single input file on ASCII keys. It has a
simpler calling sequence than ASCS$$.

• SRTF$S sorts from one to twenty input files into a single output
file. It allows specification of both input and output file
types.

REV. 0 14

PDR4130 SUBROUTINE LIBRARIES

• MRG1$S merges from one to eleven input files into a single
output file. It allows specification of both input and output
file types.

The twelve supported key types are: ASCII, single-precision integer,
single-precision real, double precision real, double-precision integer,
numeric ASCII with leading separate sign, numeric ASCII with trailing
separate sign, packed decimal, numeric ASCII with leading embedded
sign, numeric ASCII with trailing embedded sign, numeric ASCII
unsigned, and ASCII with lower case letters treated as equal to upper
case letters. SRTLIB contains the following:

ASCS$$ sorts on ASCII (upper and lower case) or binary keys,
can also merge up to ten files.

I t

SUBSRT s o r t s a s i n g l e input f i l e on
simpler c a l l i n g sequence than ASCS$$.

ASCII keys . I t has

In-memory Sor t s and Binary Search

The subrou t ines l i s t e d he re a r e contained in the l i b r a r y MSORTS
(R-mode) and VMSORTS (V-mode) in the UFD LIB. A complete d i s c u s s i o n of
these sub rou t ines w i l l be found in The PRIMOS Subrout ines Reference
Guide.

See Knuth, Eonald Tne Art of Computer Programming, v o l .
d i scuss ion of t he se types of s o r t s .

Table 13-1 l i s t s the c h a r a c t e r i s t i c s of these s o r t s .

3 for complete

Table 1 3 - 1 . Sort C h a r a c t e r i s t i c s

Sort

BUBBLE

HEAP

INSERT

QUICK

SHELL

Approximate
relative running time
Average

N**2

23N*ln(N)

N**2

12N*ln(N)

N**1.25

Maximum

-

26N*ln(N)

-

N**2

N**1.5

Comments

only good for very small N

inefficient for N<2000

small N; very good on
nearly ordered tables

fastest but very slow on
nearly ordered tables

good for N<2000

N is the number of entries in the table (nentry).

14 December 1980

SECTION 14 PDR4130

These r o u t i n e s a l l s o r t the t a b l e in inc reas ing order with the key
t r e a t e d a s a s i n g l e , signed multiple-word i n t e g e r .

RADXEX, however, t r e a t s the key a s a s i n g l e , unsigned mult i -word (or
p a r t i a l word) i n t e g e r . For example: If t he keys were 5, - 1 , 10, - 3 ,
RADXEX would s o r t them t o : 5, 10, - 3 , - 1 The o the r r o u t i n e s would s o r t
them t o : - 3 , - 1 , 5, 10

OPERATING SYSTEM LIBRARY

These subrou t ines a r e used mainly by PRIMOS. Ifewever, a number of them
useful a t the a p p l i c a t i o n s l e v e l a re desc r ibed in d e t a i l h e r e .
Complete d e t a i l s w i l l be found in The PRIMOS Subrout ines Reference
Guide.

F i l e Access

F i l e s a r e s t r u c t u r e d to be accessed in e i t h e r of two ways: SAM, or
Sequent ia l Access Method, and DAM, or Direc t Access Method. SAM f i l e s
a r e the most common type of f i l e c rea ted and processed by PRIMOS. Most
f i l e s l i k e l y to be d e a l t with by the user a re SAM f i l e s .

SAM F i l e s : A SAM f i l e c o n s i s t s of r eco rds threaded t o g e t h e r with
forward and backward p o i n t e r s . Each record in the f i l e c o n t a i n s a
po in te r to the beginning record address (BRA) of the f i l e . The
beginning record of the f i l e con ta in s a po in t e r to the f i l e d i r e c t o r y
in which i t i s l i s t e d . Since records a r e s t rung t oge the r in t h i s
manner, they can on ly be accessed s e q u e n t i a l l y ; t he e n t i r e f i l e must
be searched from the beginning in order to find a r e c o r d . This i s t ime
consuming when many random accesses must be done . Fbwever, SAM f i l e s
a r e more compact and r e q u i r e l e s s d i sk s to rage space than DAM f i l e s .
SAM f i l e s a r e accessed by PRIMOS commands such a s ED, e t c .

DAM F i l e s : DAM f i l e s have a m u l t i - l e v e l index con ta in ing p o i n t e r s to
every record on the f i l e . If the f i l e i s s h o r t , t he record address
p o i n t e r s po in t d i r e c t l y to records con ta in ing d a t a . If t he f i l e i s
l ong , t he se p o i n t e r s re fe rence o ther records con ta in ing a lower l e v e l
indexi Those i n d i c e s in tu rn have p o i n t e r s to r eco rds con t a in ing d a t a .

DAM s t r u c t u r e i s more s u i t a b l e to r a p i d , random access of da t a than SAM
s t r u c t u r e . Each i n d i v i d u a l record can be referenced by a unique
po in te r connecting the record and a po in te r index a t the beginning of
the f i l e . Searching the po in te r index for a p a r t i c u l a r record i s
quicker than hunting through each e n t i r e record in sequence.

DAM f i l e s a r e l e s s compact than SAM f i l e s . The MIDAS subsystem or user
a p p l i c a t i o n s programs must be w r i t t e n to access them. DAM f i l e s occur
in t he MIDAS and SEG subsystems.

REV. 0 1 4 - 1 0

PDR4130 SUBROUTINE LIBRARIES

Names

In the file system calls, names are either ASCII, packed two characters
per word, or character strings (the actual name preceded and followed
by a single quote). If the name length specified in a call is longer
than the actual length of the name, the name must be followed by a
number of trailing blanks sufficient to match the given length.

Passwords

Passwords can be at most six characters long. Passwords less than six
characters must be padded with blanks for the remaining characters.
Passwords are not restricted by filename conventions and may contain
any characters or bit patterns. It is strongly recommended that
passwords not contain blanks, commas, the characters
= I ' @ { } [] () or lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

Keys and Error Codes

All keys and error codes are specified in symbolic, rather than numeric
form. These symbolic names are defined^ as PARAMETERS for FORTRAN
programs in $INSERT files in a UFD on the master disk called SYSCOM.
The key definition file is named KEYS.F for FORTRAN. The error
definition file is ERRD.F.

Error Handling

Errors occurring from a subroutine call causes a non-zero value of the
argument CODE to be turned. Users should always test CODE after a call
for non-zero values to be certain no errors are missed. Error printing
and control are performed by the ERRPR$ subroutine:

CALL ERRPR$ (key,code,text,text-length,name,name-length)

key Action to be taken after printing message.

K$NRTN Exit to PRIMOS; do not allow return to calling
program.

K$SRTN Exit to PRIMOS; return to calling program following
a START command.

K$IRTN Return immediately to calling program.

code An integer variable containing the error code
returned by the subroutine generating the error.

14 - 11 December 1980

SECTION 14 PDR4130

t e x t Use r ' s message to be p r in t ed following s tandard e r r o r
message (up to 64 cha rac t e r s) .

t e x t - l e n g t h length of t e x t in c h a r a c t e r s .
To omit t e x t , spec i fy both t e x t and t e x t - l e n g t h a s 0.

name User-speci f ied name of program or sub-sys tem,
d e t e c t i n g or r epor t ing the e r r o r (up to 64
cha rac t e r s) .

name-length Length of name in c h a r a c t e r s .
To omit name, spec i fy both name and name-length a s 0.

The message format for non-zero va lues of CODE i s :

s tandard t e x t , u s e r ' s t e x t , i f any (name, i f any) e . g . ,

ILLEGAL NAME. OPENING NEMFILE (NEWWRT)

These e r r o r s a r e included in the l i s t of run- t ime e r r o r s in Appendix A.
They a r e labe led a s F i l e System e r r o r s .

Operating System Subroutines

A l i s t of opera t ing system subrou t ines with a b r i e f d e s c r i p t i o n of
t h e i r func t ions i s g iven below. Subrout ines marked with a b u l l e t (•)
a re descr ibed in d e t a i l following t h i s l i s t .

• ATCH$$ Attaches to a UFD and o p t i o n a l l y makes i t t he home UFD.

• CNAM$$ Changes a f i lename.

COMI$$ Switches command input stream from te rmina l to command f i l e
and v i c e - v e r s a .

COMO$$ Switches output stream from te rmina l to f i l e and v i c e - v e r s a .

CREA$$ Crea tes a sub-UFD in the c u r r e n t UFD.

ERKL$$ Reads or s e t s the e rase and k i l l c h a r a c t e r s .

FORCEW Writes immediately to the d i s k a l l modified r eco rds of t he
f i l e c u r r e n t l y open on f u n i t .

GPAS$$ Returns passwords of sub-UFD in t he c u r r e n t UFD.

GPATH$ Obtains a f u l l y qua l i f i ed pathname for an open f i l e u n i t .

NAMEQ$ Compares f i lenames for equ iva lence .

• PRWF$$ Reads, w r i t e s , and p o s i t i o n s po in t e r in a SAM or DAM f i l e .

REV. 0 14 - 12

PDR4130 SUBROUTINE LIBRARIES

RDEN$$ Reads entry in UFD.

RDLIN$ Reads line of characters from compressed or uncompressed
ASCII disk file.

RDTK$$ Parses the command line, token by token.

REST$$ Restores an R-mode memory image to user memory from a disk
file.

• RESU$$ Restores an R-mode memory image from a file, sets initial
values, and begins execution. An error in this call causes
an error message to be printed automatically and then
returns command to PRIMOS.

SATR$$ Sets attributes (protection, date, time, etc.) in a UFD
entry.

SAVE$$ Saves an R-mode memory image in user memory by writing it
into a disk file.

SGDR$$ Positions and reads segment directory entries.

SPAS$$ Sets the passwords in the current UFD.

• SRCH$$ Opens or closes a file.

TEXTO$ Checks the validity of a filename.

• TSRC$$ Opens or closes a file anywhere in the PRIMOS file
structure.

WTLIN$ Writes a line of ASCII characters to a disk file in
compressed format.

ATCH$$

CALL ATCH$$ (ufd-name,name- length , log ica l -d i sk ,password ,key ,code)

ufd-name Name of UFD to be a t t ached to (i f ufd-narne=K$HOME and
key=0, a t tachment i s t o home UFD) .

name-length Length in c h a r a c t e r s of ufd-name (i f ufd-name=K$HOME,
name-length i s i g n o r e d) .

l o g i c a l - d i s k Logical d i s k to searched for ufd-name when
key=K$IMFD.

l o g i c a l - d i s k Action

K$ALLD Search a l l s t a r t e d - u p
l o g i c a l d e v i c e s .

K$CURR Search MFD of c u r r e n t d i s k .

14 - 13 December 1980

SECTION 14 PDR4130

password 3-word array containing the owner or non-owner
password of ufd-name (if attaching to home UFD,
password may be 0) .

key reference-key + set-key

reference-key

K$IMFD Attach to ufd-name in MFD on log ica l -d i sk .
K$ICUR Attach to ufd-name in current UFD.

set-key

K$SETH Set current UFD to home after attaching.

code Returns integer-valued error code.

CNAM$$

CALL CNAM$$ (old-name,old-name-length,new-name,new-name-length,
code)

old-name Name of f i l e to be changed.

old-name-length Number of characters in old-name.

new-name Name to be changed t o .

new-name-length Number of characters in new-name•

code Returns integer-valued error code.

Note

CNAM$$ requires owner-rights in the current UFD.

The names of the MFD,BOOT,BADSPT, or the packname may not be
changed.

PRWF$$

CALL PRWF$$ (read-write-key+position-key+mode,file-unit,LOC(buffer) ,
number-of-words,position-value,words-transferred, code)

read-write-key Action to be taken (mandatory) .

K$READ Read number-of-words from f i l e -un i t into buffer.

K$WRIT Write number-of-words from buffer to f i l e - u n i t .

K$POSN Set current position to value a t 32-bit integer
in posit ion-value.

REV. 0 1 4 - 1 4

PDR4130 SUBROUTINE LIBRARIES

K$TRNC

K$RPOS

p o s i t i o n - k e y

K$PRER

KPOSR

K$PREA

Truncate f i l e s open on f i l e - u n i t a t c u r r e n t
p o s i t i o n .

Return c u r r e n t p o s i t i o n s a s a 32 -b i t i n t e g e r in
p o s i t i o n - v a l u e .

I n d i c a t e s pos i t i on ing (o p t i o n a l) .

Move f i l e po in t e r of f i l e - u n i t p o s i t i o n - v a l u e
words r e l a t i v e to c u r r e n t p o s i t i o n ; then
perform read -wr i t e -key o p e r a t i o n .

Performs r ead -wr i t e -key o p e r a t i o n then move f i l e
p o i n t e r of f i l e - u n i t p o s i t i o n - v a l u e words
r e l a t i v e to c u r r e n t p o s i t i o n .

Move f i l e po in t e r of f i l e - u n i t to abso lu t e
p o s i t i o n - v a l u e then perform r ead -wr i t e -key
o p e r a t i o n .

K$POSA

If p o s i t i o n - k e y i s o m i t t e d , K$PRER i s used.

Perform r ead -wr i t e -key o p e r a t i o n , then move
po in t e r of f i l e - u n i t to a b s o l u t e p o s i t i o n - v a l u e .

mode

omitted

K$CONV

K$FRCW

Transfer a l l or convenient number of words
(op t iona l) .

Read/wri te number-of-words.

Read/write convenient number of words up to
number-of-words.

Perform w r i t e to d i s k from buffer before
execut ing next i n s t r u c t i o n in the program.
Inc reases d i sk I/O t i m e .

See The PRIMOS Subrout ines Reference Guide for a d i s c u s s i o n of
"convenient" .

f i l e - u n i t

buffer

F i l e u n i t on which the f i l e has been opened (by
SRCH$$, PRIMOS command, e t c .)

Data buffer for r e a d / w r i t e ,
spec i fy a s LOC(0) .

I f no t needed,

number-of words number of words to be t r a n s f e r r e d (mode=0) or
maximum number of words to be t r a n s f e r r e d
(mode=K$CONV) . number-of-words may range from 0
to 65535.

14 - 15 December 1980

SECTION 14 PDR4130

p o s i t i o n - v a l u e Rela t ive or abso lu te p o s i t i o n va lue (3 2 - b i t
i n t e g e r , INTEGER*4) . If not needed, s p e c i f y
long- in t ege r zero as 000000 or INTL(0) .

words - t rans fe r red The number of words a c t u a l l y t r a n s f e r r e d when
read-write-key=K$READ; o t h e r keys l eave t h i s
parameter unmodified. (INTEGER*2).

code Returns integer-valued error code.

RESU$$

CALL RESU$$ (filename,name-length)

filename Name of the file containing the memory image.

name-length Number of characters in filename.

SRCH$$

CALL SRCH$$ (ac t ion+reference+newfi le , f i lename,name- length ,
f i l e - u n i t , f i l e - t y p e , c o d e)

ac t i on Action to be taken (mandatory) .

K$READ Open filename for reading on f i l e - u n i t .

K$WRIT Open filename for wr i t ing on f i l e - u n i t .

K$REWR Open filename for reading and wr i t i ng on f i l e - u n i t .

K$CLOS Close f i l e by filename or by f i l e - u n i t .

K$DELE Delete f i lename.

K$EXST Check ex i s t ence of f i lename.

r e fe rence Modifies ac t ion (o p t i o n a l) .

K$IUFD Search for filename in c u r r e n t UFD (t h i s i s the
de fau l t) .

K$ISEG Perform the ac t i on on the f i l e t h a t i s a segment
d i r e c t o r y e n t r y in the d i r e c t o r y which i s open on
f i lename.

K$CACC Change access r i g h t s of f i l e open on f i l e - u n i t t o
a c t i o n .

K$GETU Open filename on an unused f i l e - u n i t s e l e c t e d by
PRIMOS. The un i t number i s re tu rned in f i l e - u n i t .

REV. 0 14 - 16

PDR4130 SUBROUTINE LIBRARIES

new-f i l e S p e c i f i e s type of f i l e t o c r e a t e i f f i l e -name does
not a l r e a d y e x i s t .

K$NSAM SAM f i l e (t h i s i s the d e f a u l t) .

K$NDAM DAM f i l e .

K$NSGS SAM segment d i r e c t o r y .

K$NSGD DAM segment d i r e c t o r y .

fi lename Name of t he f i l e to be opened. If reference=K$ISEG,
fi lename i s a f i l e u n i t on which a segment d i r e c t o r y
i s a l r e a d y open.

name-length Number of c h a r a c t e r s of f i lename.

f i l e - u n i t F i l e u n i t number on which f i l e i s t o be opened or
c l o s e d .

f i l e - t y p e Returns type of f i l e opened. If c a l l does no t open
f i l e , i t s va lue i s unchanged. The v a l u e s a r e
i n t e g e r s .

0
1
2
3
4

SAM file
DAM file
SAM segment directory
DAM segment directory
UFD

code Returns an in tege r -va lued e r r o r code.

tfote

A UFD may be opened o n l y for r ead ing .

A UFD cannot be d e l e t e d un less i t i s empty.

A segment d i r e c t o r y cannot be de l e t ed un less i t i s of l eng th 0.

TSRC$$

CALL TSRC$$ (a c t i o n + n e w - f i l e , p a t h n a m e , f i l e - u n i t , c h a r a c t e r -
pos i t i on , code)

ac t i on Action to be taken (mandatory) .

K$READ Open pathname for reading on f i l e - u n i t .

K$WRIT Open pathname for wr i t i ng on f i l e - u n i t .

K$RDWR Open pathname for reading and w r i t i n g on
f i l e - u n i t .

14 - 17 December 1980

SECTION 14 PDR4130

K$DELE Delete file pathname.

K$EXST Check on existence of pathname.

new-file Specifies type of file to create if pathname
does not already exist.

K$NSAM SAM file (this is the default).

K$NDAM DAM file.

K$NSGS SAM segment directory.

K$NSGD DAM segment directory.

pathname A specification of any file in any directory
or subdirectory stored in array pathname
packed two characters per word.

file-unit PRIMOS file unit number on which the file is
to be opened or deleted. The file-unit is
closed before any action is taken.

character-position A two-element integer array.
word 1 of entry: the first character in the
array that is part of the pathname (count
starts at 0) returns: one past the last
character that was part of the pathname,
word 2 - the number of characters in the
pathname.

f i le- type Returns type of f i l e opened. If c a l l does not
open f i l e , i t s value i s unchanged. The values
are integers .

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD

code r e t u r n s an i n t ege r valued e r r o r code

Note

TSRC$$ always c l o s e s the f i l e u n i t , then a t t a c h e s fco the u s e r ' s
home UFD before a t tempt ing any a c t i o n .

REV. 0 14 - 18

partiv
Altering the Connnand

Environment

PDR4130 CUSTOMIZING YOUR ENVIRONMENT

SECTION 15

CUSTOMIZING YOUR ENVIRONMENT

Users can customize their command environment in four ways:

• They can use the RDY command to choose the form of prompts to be
displayed at their terminal during an interactive session or in
a command file.

• They can use the ABBREV command to define their own
abbreviations for PRIMOS commands, and to use those
abbreviations during interactive sessions.

• They can define global variables that can be used at PRIMOS
level and by user programs.

• They can send messages and set their terminal's ability to
receive messages with the MESSAGE command.

CHANGING THE PROMPT MESSAGE

In addition to its normal, OK, and ER! prompts, PRIMOS also supplies a
long form of prompt message which displays the time, the amount (in
seconds) of CPU time and I/O time used since the last prompt, and the
user's stack level. (The stack level is only displayed if it is
greater than 1; most users don't need to worry about it.)

Users can change the form of prompt message displayed at their terminal
by giving the RDY command. Its format is:

RDY [options]

If given without options, the RDY command prints a single long-form
prompt. If given with options, the command changes the form and/or
content of the prompt as follows:

Option Function

-LONG Sets the terminal to the long form
of prompt.

-BRIEF Returns it to the standard "OK,".

-OFF Suppresses prompts entirely.

-ON Re-enables prompts to the previous level of
verbosity (long or brief).

1 5 - 1 December 1980

SECTION 15 PDR4130

-READY LONG xxx

-READY BRIEF xxx

-ERROR LONG xxx

-ERROR BRIEF xxx

Changes the t e x t
message to xxx.

Changes the t e x t
message to xxx.
OK,

Changes the t e x t
message to xxx.

Changes the t e x t
message to xxx.
•ERI

p o r t i o n of t h e long ready
Default a t l o g i n t ime i s OK

po r t i on of t he b r i e f ready
Defaul t a t l og in time i s

p o r t i o n of t he long e r r o r
Default a t l o g i n t ime i s ER

p o r t i o n of t he b r i e f e r r o r
Defaul t a t l og in t ime i s

For example:

OK, RDY -LONG
OK 13:11:41 0.827 1.739
RDY -OFF
RDY -ON
OK 13:11:56 0.181 0.315
RDY BRIEF -RB Absolutely!
Absolute ly!

CREATING AND USING ABBREVIATIONS (ABBREV)

The PRIMOS command ABBREV allows you t o c r e a t e your own a b b r e v i a t i o n s
for use in PRIMOS command l i n e s . I t s form i s :

ABBREV [pathname] [opt ions]

To use ABBREV, you:

• Create an empty abbreviation file.

• Define abbreviations within the file.

• Invoke ABBREV to activate the file during any work session in
which you want to use your abbreviations.

When an abbreviation file is activated, PRIMOS calls its abbreviation
processor to scan each PRIMOS command entered from the user's terminal.
The abbreviation processor checks each word against the active
abbreviation file, expands all abbreviations to their full defined
form, then passes on the commands to the standard command processor.
You can modify your abbreviation file at any time; but you can use it
only for interactive sessions. Abbreviations will not be expanded in
command files. Once your abbreviation file is activated, it remains
active until you give the ABBREV -OFF command or log out.

REV. 0 15 -

PDR4130 CUSTOMIZING YOUR ENVIRONMENT

Creating an Abbreviation File

Invoke the ABBREV command with the -CREATE option, giving a pathname
which names and locates the new file. For example:

ABBREV MY_UFD>MY_UFD. ABBREV -CREATE

This command creates and activates an empty abbreviation file.
Therefore, the file specified must not already exist.

Defining Abbreviations

Abbreviations are defined and put into the abbreviation file by the
-ADD option of the ABBREV command. This option has the form:

ABBREV [pathname] -ADD name value

where name is^ the abbreviation and value is tne commands and/or
arguments the abbreviation specifies. For example:

ABBREV -ADD JD JOB -DISPLAY

This example enters the abbreviation "JD" in the user's abbreviation
file, and defines it as standing for the command "JOB" plus the option
"-DISPLAY." Whenever this abbreviation file is activated during a work
session at a terminal, typing "JD" at that terminal will be equivalent
to typing "JOB -DISPLAY".

Note

Beware of defining abbreviations identical to PRIMOS
abbreviations. The abbreviation processor will give your
abbreviation precedence. Therefore, you won't be able to use
the PRIMOS abbreviation while your abbreviation file is active.

Activating an Abbreviation File

ABBREV pathname [-ON]

activates an existing abbreviation file. PRIMOS loads the abbreviation
table from the specified file and checks each word typed at the
terminal against the abbreviations in the file before giving it to the
command processor, expanding the abbreviations it finds into their full
form.

15 - 3 December 1980

SECTION 15 PDR4130

Using Variables in Abbreviations

You can define variables within an abbreviation by using numerals
flanked by ABBREV's escape character, %. The symbol %1% stands for the
first word following the abbreviation; %2% stands for the second word,
and so on. (Currently, up to nine variable words are allowed.) This
feature is particularly handy for commands naming files. For example,
defining an abbreviation by the command:

ABBREV -ADD F %1% %2% -L %2%.LIST -XREF -64V -DEBUG

would allow the abbreviation processor to translate the command:

F FTN DRAGON

into the command:

FTN DRAGON -L DRAGON.LIST -XREF -64V -DEBUG

Similarly,

F F77 DRAGON

would become:

F77 DRAGON -L DRAGON.LIST -XREF -64V,-DEBUG

Other Options: ABBREV has options for refining definitions, changing
or deleting definitions, etc. Four of common use are:

Command Function

ABBREV -OFF Deactivates abbreviation file.

ABBREV [pathname] -ON Reactivates file. If pathname is
not supplied, previous pathname is
used.

ABBREV [pathname] -DELETE Deletes the named abbreviations
from the file.

abbrev-1 [...abbrev -n]

ABBREV [pathname] -LIST Lists the contents of the file.

For a full list of options and their uses, see The PRIMOS Commands
Reference Guide.

REV. 0 15

PDR4130 CUSTOMIZING YOUR ENVIRONMENT

USING GLOBAL VARIABLES

Sometimes you want to define variables that can be known to, and
possibly modified by, a group of programs, rather than a single
program. At these times, you can use global variables. Global
variables are stored in one or more files inside your UFD or
subdirectory. When you activate a global variable file, all the
variables it contains can be used by you, (interactively, for PRIMOS
commands) , by all your CPL programs, and by programs written in
high-level languages. Global variables survive program termination and
logouts. Once defined, they last until you delete them.

The PRIMOS commands governing variables are shown below. They are
explained in greater detail later in this section. For complete
details see The CPL User's Guide or The PRIMOS Commands Reference
Guide.

Command Function

DEFINE_GVAR Creates or activates a global variable file.

SET_VAR Defines a new variable or changes the value of
an existing variable. If the variable is a
global variable, places it in the active global
variable file.

LIST VAR Lists the variables contained in an active
global variable file.

DELETE VAR Deletes variables
variable file.

from an active global

Global variables are particularly useful for providing easy
communication of variable values among programs, as they may be set and
referenced:

• At command l e v e l

• By any of your CPL programs

• By h i g h - l e v e l language programs

Global v a r i a b l e s must have names t h a t begin with d o t s (.) .
example:

For

.SIZE, .UFD

At command l e v e l , g loba l v a r i a b l e s a r e defined by t he SET_VAR command.
Within a CPL program, they a r e defined by the &ARGS d i r e c t i v e , the
&SETJVAR d i r e c t i v e , or the SET_VAR command. Tney a r e def ined from
h i g h - l e v e l programs by the GV$SET r o u t i n e , and referenced wi th in
h i g h - l e v e l language programs by the GV$GET r o u t i n e . See The
Subrout ines Reference Guide for d e t a i l s .

15 December 1980

SECTION 15 PDR4130

SENDING MESSAGES

The MESSAGE command i s used to send or r ece ive messages . Ei ther u s e r s
or t he ope ra to r may send messages. Messages may be s e n t :

• From any user te rminal to any o ther user t e rmina l

• From any user te rminal to the supervisor te rmina l

• From the superv isor terminal to a l l u se r s

• From the superv isor te rminal to a spec i f i ed user

• From the superv isor terminal to another supe rv i so r t e rmina l on a
d i f f e r e n t node on the network

User Messages

The format of a u s e r - t o - u s e r or u s e r - t o - o p e r a t o r message i s :

MESSAGE ("username "1 [-NOW]
L-usernumberJ

t e x t of message

To send a message to the o p e r a t o r , omit the username argument. To send
a message to another u s e r , g ive e i t h e r the u s e r ' s username (the name
under which he or she logged in) or usernumber (the phys i ca l l i n e
number of h i s or her t e r m i n a l) . To g e t a l i s t of u s e r s , t h e i r
usernumbers, and t he l i n e numbers of t h e i r t e r m i n a l s , i s s u e t h e STATUS
USER command.

If you send a message to a username, a l l u se r s logged in to t h a t name
rece ive the message. If you send a message to a usernumber, o n l y t he
s p e c i f i c t e rmina l with t h a t number r ece ive s the message.

t e x t of message i s the s i n g l e - l i n e message to be s e n t . Sending a
message produces two l i n e s of information on the r e c e i v e r ' s t e r m i n a l .
The t op l i n e c o n t a i n s information about the sender ; t h e second
con t a in s the t e x t of the message. For example:

*** uu hh:mm
t e x t of message

uu i s t he username and usernumber and hh'mm i s the t ime of day in hours
and minu tes . For example:

*** BEECH (55) 11:16

If the -NOW opt ion i s s p e c i f i e d , the message i s p r i n t e d immediately on
t h e r e c e i v e r ' s t e r m i n a l .

REV. 0 15

PDR4130 CUSTOMIZING YOUR ENVIRONMENT

If the -NOW option is not specified, messages are stored in a
and printed when the receiver returns to PRIMOS command level.

buffer

Setting Receive States

Users may set the receive state of their terminal with the MESSAGE
command. Cne of three different states may be selected to control the
flow of messages:

Option

MESSAGE -ACCEPT

MESSAGE -DEFER

MESSAGE -REJECT

Function

Enables reception of all messages.

Inhibits immediate messages. (Messages
sent with -NOW option will be rejected by
MESSAGE. Messages sent without the -NOW
option will be received when you return to
command level.)

Inhibits all messages.

Deferring or rejecting messages is useful when you do not want messages
to interrupt a terminal session. This can be critical in situations
where you are printing the contents of a file, for example. Deferring
or rejecting messages in this instance would prevent the message from
being printed along with your file's contents.

You cannot send a message while in MESSAGE -REJECT mode or MESSAGE
-DEFER mode, because the receiver will not be able to respond.

Querying Receive States

You may determine what a user's terminal receive state has been set to
with the -STATUS option of the MESSAGE command. Issuing the command
-STATUS lists user's login names, terminal numbers, and receive states.

Option

MESSAGE -STATUS

MESSAGE -STATUS username

MESSAGE -STATUS usernumber

MESSAGE -STATUS ME

Function

Lists the receive state of all
users.

Lists the receive state of all
users with the name username.

Lists the receive state of the
terminal with the number
usernumber.

Lists the receive state of your
own terminal.

15 December 1980

SECTION 15 PDR4130

Error Messages

The following error messages are sent by the MESSAGE command:

BAD MESSAGE

This usually means that a typing error was made.

UNKNOWN ADDRESSEE

The user to whom you are trying to send a message is not logged in.

USER NOT RECEIVING NOW

This message means one of two things:

• If you are trying to send an immediate message (M -NOW) , it
means that the recipient's receive state is either DEFER or
REJECT.

• If you are sending a message without the -NOW option, this
warning means that the recipient's receive state is REJECT.

USER BUSY

Either the terminal buffer or the message buffer is full.

REQUIRES -ACCEPT ENABLED

Sender must issue MESSAGE -ACCEPT before sending message.

REV. 0 15

PDR4130 USING THE CONDITION MECHANISM

SECTION 16

USING THE CONDITION MECHANISM

INTRODUCTION

PRIMOS has a condition mechanism which is activated when any executing
process encounters certain unusual events. These events (or
conditions) fall into three categories:

• Software-puzzling situations: end of file encountered while
reading data, illegal addresses, etc.

• Hardware and arithmetic exceptions: numbers too large or too
small for the computer to handle, attempts to divide by zero,
program too large for its allotted space, etc.

• External occurrences: situations not directly controlled by the
executing process, such as the use of the BREAK key from the
user's terminal

More than 30 PRIMOS-defined conditions exist. Some examples are:

Condition

ACCESS VIOLATIONS

ARITH$

STACK OVF$

Definition

Process has attempted to read,
write or execute into a segment
to which it has no access for
that function.

Arithmetic exception.

Process has overflowed its stack
segment.

User has hit break key on
terminal.

QUIT$

ILLEGAL_INST$

ENDFILE (f i l e)

For a complete l i s t of t h e s e c o n d i t i o n s , see The PRIMOS Subrout ines
Reference Guide.

Process has t r i e d to execute an
i l l e g a l i n s t r u c t i o n .

End of f i l e encountered while
reading a PL/I f i l e .

16 December 1980

SECTION 16 PDR4130

USING THE CONDITION MECHANISM

The condi t ion mechanism's goal i s e i t h e r to r e p a i r the problem and
r e s t a r t t he program, or to te rmina te the program in an o r d e r l y manner,
lb achieve t h i s g o a l , the condi t ion mechanism a c t i v a t e s d i a g n o s t i c or
remedial sub rou t ines (or PL/I begin blocks) c a l l e d o n - u n i t s .

Users wr i t i ng in FORTRAN IV, FORTRAN 77, PL/If COBOL, or PMA can de f ine
t h e i r own o n - u n i t s wi th in the procedures for which t h e y ' r e i n t ended .
However, a l l u s e r s a r e au toma t i ca l ly p ro tec ted by PRIMOS' system
o n - u n i t s . When an e r r o r condi t ion o c c u r s , the c o n d i t i o n mechanism
looks for o n - u n i t s wi th in the executing procedure . If i t f i nds none,
or i f t he p rocedu re ' s o n - u n i t s c a l l for fu r the r h e l p , t he cond i t i on
mechanism sea rches f i r s t through any c a l l i n g p rocedures ' o n - u n i t s and
then through the sys t em ' s o n - u n i t s , a c t i v a t i n g the f i r s t a p p r o p r i a t e
on -un i t i t f i n d s .

THE SYSTEM DEFAULT ON-UNIT

Of a l l t he system o n - u n i t s , the system d e f a u l t o n - u n i t i s t he one most
l i k e l y to be encountered by the u s e r . This o n - u n i t p r i n t s the
following message a t the u s e r ' s t e r m i n a l , then r e t u r n s t h e user to
PRIMOS command l e v e l :

E r ro r : cond i t ion "condi t ion" ra i sed a t "address"
[ex t r a information]

The user may then take any one of the following a c t i o n s :

• Give the START command. The cond i t ion mechanism w i l l t r y to
resume running the program from the po in t a t which t he cond i t i on
was r a i s e d .

• Give the DMSTK command. This w i l l p r i n t (a t the t e rmina l or
i n t o a f i l e , a s the user prefers) a s t ack dump, which t r a c e s the
sequence of c a l l s and r e t u r n s by which the program reached i t s
c u r r e n t s t a t e . If you a re fami l i a r with Prime machine
a r c h i t e c t u r e , you may find t h a t t h i s command g i v e s you enough
information to solve your problem. (For d e t a i l s , see The PRIMOS
Command Reference Guide.) The user may START a program again
a f t e r dumping the s t a c k .

• Give t he DBG command to invoke the s o u r c e - l e v e l debugger . Then
r e - run t he program under DBG. If the DMSTK command d i d n ' t
provide enough information to so lve the problem, t h i s i s
probably the b e s t course of a c t i on to t a k e .

• Give the RLS command to r e l e a s e the e r r a n t program. You w i l l
remain a t PRIMOS command l e v e l and can g ive any PRIMOS command
you choose .

REV. 0 16

PDR4130 USING THE CONDITION MECHANISM

Note

If the system default on-unit is invoked for a process running
as a phantom or batch job, the condition mechanism prints the
error message into the job's command output file and then logs
the process out.

ON-UNIT ACTIONS

On-units can:

• Terminate the program via a non-local GOTO, passing control back
to the main program, so that it can call EXIT and return to
PRIMOS level.

• Run diagnostic routines, then terminate the program (as above) .

• Repair the problem which caused the error condition and have the
program resume execution from the point of interrupt.

• Ignore the error condition and resume running the program.

• Transfer control to some predetermined spot in the program,
possibly in a different procedure from the one which raised the
error condition.

• "Continue to signal", passing control back to the condition
mechanism and telling it to hunt for another on-unit.

• Print messages, then do any of the above.

• Print messages and/or run diagnostic routines, then transfer
control back to the user at the terminal (as the system default
on-unit does).

WRITING ON-UNITS

User-written on-units have the advantage of being tailored to the
procedures for which they are written. Since on-units have the same
range of action as any subroutine, they can be as elaborate or as
simple as required. On-units can even turn some error conditions into
advantages: "ON ENDFILE CALL some-subroutine" can be* an efficient way
of terminating an indefinite-length input loop.

Within any procedure, users can define on-units for as many conditions
as circumstances dictate. On-units can also be defined to handle
conditions not normally recognized by PRIMOS: one subroutine (created
by a call to SIGNL$ or SGNL$F) signals the condition when it occurs and
another (created by a call to MKONU$, MKON$P, or MKON$F) acts as
on-unit.

1 6 - 3 December 1980

SECTION 16 PDR4130

PRIMOS provides the following subroutines for users wishing to create
their own on-units:

Subroutine Function

MKONU$ Called by a procedure when it wishes to

create an on-unit.

MKON$F An F T N - s p e c i f i c v e r s i o n o f MKONU$.

MKON$P A v e r s i o n of MKONU$ used w i t h FORTRAN 77
and PL1G.

SIGNL$,SGNL$F Called to r a i s e a c o n d i t i o n .

CNSIG$ Called by an on -un i t t o pass c o n t r o l back
TO the cond i t ion mechanism.

RVONU$,RVON$F Called by a procedure to r e v e r t (d i sab le)
an o n - u n i t .

MKLB$FrPLl$NL Used in FORTRAN programs to enable
o n - u n i t s to perform non- loca l GOTO's.

Information on how t o use these subrou t ines i s g iven in The PRIMOS
Subrout ines Reference Guide.

When wr i t ing o n - u n i t s , t he following r u l e s must be obse rved :

• On-units can hand on con t ro l in one of t h r e e ways: by c a l l i n g
another procedure , by a l o c a l or non- loca l GOTO, or by r e t u r n i n g
to t he c a l l i n g procedure . (They may no t c a l l EXIT, though they
may GO TO a po in t in the main program which does so .)

• They may s e t e r r o r codes a s r e t u r n pa rame te r s , p r i n t e r r o r
messages, or s igna l o the r e r r o r c o n d i t i o n s . But t hey may no t
c a l l ERRRTN or use ERRPR$ with any bu t t h e immedia te- re turn key
(K$IRTN).

• Programs con ta in ing o n - u n i t s must be compiled in V-mode or
I-mode.

SCOPE OF ON-UNITS

On-units a r e u s u a l l y defined a t the beginning of a program or
sub rou t ine ; but they may be defined a t any po in t wi th in the program.
When the program reaches the po in t a t which t he o n - u n i t i s de f i ned ,
(i . e . , a c a l l t o MKONU$, MKON$P, or MKON$F) t he o n - u n i t i s s a id to be
s e t . HDwever, the on -un i t does not execute a t t h i s p o i n t . I t does no t
execute un le s s t he cond i t ion to which i t responds i s r a i s e d . An
o n - u n i t remains s e t u n t i l one of t h r e e t h i n g s happens:

REV. 0 16

•

PDR4130 USING THE CONDITION MECHANISM

The procedure wi th in which the on -un i t was def ined r e t u r n s
(ends) .

• A new on-unit for the condition i s defined.

• The o n - u n i t i s r eve r t ed (disabled) by a c a l l to RVONU$ or
RVON$F.

Thus, i f an o n - u n i t for the cond i t ion ARITH$ i s def ined a t the
beginning of a program, i t remains in e f f e c t throughout t he program,
unless i t i s r eve r t ed or some o the r on -un i t for ARITH$ i s def ined l a t e r
in the program. If a subrou t ine wi th in t h a t program d e f i n e s i t s own
on -un i t for ARITH$, then t h a t o n - u n i t t a k e s precedence (but on ly whi le
the subrou t ine i s e x e c u t i n g) . Each c a l l t o t he subrou t ine
r e - e s t a b l i s h e s i t s o n - u n i t ; each r e t u r n from the sub rou t ine r e v e r t s
the new o n - u n i t and r e - e s t a b l i s h e s t he on -un i t def ined in t he main
program. (If no o n - u n i t i s defined wi th in the main program, then
PRIMOS' o n - u n i t s a r e in e f f e c t when t he main program i s running .)

A FORTRAN EXAMPLE

Suppose you have a program which c o n t a i n s a sub rou t ine c a l l e d UPDATE
t h a t p e r i o d i c a l l y updates j ou rna l e n t r i e s , h e a d e r s , e t c . Once t h i s
subrout ine i s s t a r t e d , you want i t to f i n i s h ; a QUIT in the middle
could foul up your bookkeeping. Write a subrou t ine c a l l e d NOQUIT which
responds to QUITs by p r i n t i n g a message a t the t e rmina l but o therwise
ignoring the QUIT:

SUBROUTINE NOQUIT (CP) / *Th i s w i l l be the o n - u n i t
INTEGER*4 CP /*CP=pointer to cond i t i on frame for QUIT$

C
CCMMON/COM/NAME /*A v a r i a b l e used by UPDATE
CALL TNOU (' S o r r y , q u i t s not allowed during u p d a t e ' , 38)
CALL TNOUA (' C u r r e n t l y process ing record ' , 28)
CALL TNOU (NAME, 6)
RETURN /*Return to UPDATE a t po in t where q u i t occurred
END

Define NOQUIT as an external procedure within subroutine UPDATE, and
establish it as an on-unit via the subroutine MKON$F. Note that if
UPDATE (or any subroutine that calls MKONU$ or MKON$F) is to be
compiled with the FTN compiler, it must obey the following rules:

• It must include a STACK HEADER 34 specification.

• It must be compiled using the -SPO option. This option allows
allocation of the stack header space needed by the on-unit, but
suppresses some error testing. Therefore, we advise that you
first compile the on-units without the -SPO option, in order to
test for coding errors that -SPO would ignore, before doing the
actual compilation with -SPO.

1 6 - 5 December 1980

SECTION 16 PDR4130

• Since the -SPO opt ion a c t i v a t e s the DCLVAR o p t i o n , t he
sub rou t ine may no t con ta in undeclared v a r i a b l e s .

• I t must not con ta in common blocks with names of f i ve l e t t e r s
followed by a d o l l a r s ign (xxxxx$).

SUBROUTINE UPDATE
C

EXTERNAL NOQUIT
STACK HEADER 34 /*Prov ides s t ack space for o n - u n i t
COMMON/COM/NAME /*On-uni t r e p o r t s t he va lue of t h i s

/ * v a r i a b l e
INTEGER*2 NAME
CALL MKON$F ('QUITS', 5, NOQUIT)

/*Parameters a r e :
/ * condition-name (defined by PRIMOS)
/ * length of cond i t ion name
/ * name of on -un i t sub rou t ine

C
C
C . . . b o d y of subrou t ine would go h e r e . . .
C
C
C

RETURN /*At t h i s p o i n t , NOQUIT's a u t h o r i t y c e a s e s .
END

REV. 0 16

Appendices

PDR4130 GLOSSARY

APPENDIX A

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

The following is a glossary of concepts and conventions basic to Prime
computers, the PRIMOS operating system, and the file system.

• binary file

A translation of a source file generated by a language translator (FTN,
PL1G, F77, COBOL, PMA, RPG). Such files are in the format required as
input to the loaders. Also called "object file".

• byte

8 bits; 1 ASCII character.

• condition mechanism

A PRIMOS facility which responds to conditions that would normally
cause program termination. Rather than terminating the program
immediately, the condition mechanism activates an on-unit to take some
diagnostic or remedial action. A list of conditions handled by PRIMOS'
condition mechanism is given in the Subroutine Reference Guide.

• CPU

Central Processor Unit (the Prime computer proper as d i s t i n c t from
peripheral devices or main memory).

• current d i rec tory

A temporary working d i rec tory explained in the discussion on Home vs
Current Directories in Section 2.

• d i rectory

A file directory; a special kind of file containing a list of
filenames and/or other directories, along with information on their
characteristics and location. MFDs, UFDs, and subdirectories
(sub-UFDs) are all directories. (Also see segment directory.)

December 1980

APPENDIX A PDR4130

• d i rectory name

The f i l e name of a d i rectory .

• external command

A PRIMOS command existing as a runfile in the command directory
(CMDNC0) . It is invoked by name, and executes in user address space.
No system-wide abbreviations exist for external commands. Users may
define abbreviations for external commands by using the ABBREV command.

• file

An organized col lect ion of information stored on a disk (or a
peripheral storage medium such as tape) . Each f i l e has an identifying
label called a filename.

• filename

A sequence of 32 or fewer characters which names a file or a directory.
Within any directory, each filename is unique. Directory names and a
filename may be combined into a pathname. Most commands accept a
pathname wherever a filename is required.

Filenames may contain only the following characters:

A-Z, 0-9, _ # $ - . * &

The f i r s t character of a filename must not be numeric. On some devices
underscore (_) p r in t s as backarrow (<-) .

• filename conventions

Suffixes indicate various types of files. (A dot separates the suffix
from the base name of the file.) The conventions are:

filename.compiler-name Source file (see list in Table 7-1)
filename.LIST Listing file
filename.BIN Binary (object) file
filename .MAP Load map file
filename.SEG V-mode runfile (executable)
filename.SAVE R-mode runfile (executable)
filename.CPL CPL file
filename.PH Phanton command file
filename.CO Command input file
filename.COMO Command output file

REV. 0

PDR4130 GLOSSARY

A previous convention, which used prefixes to designate f i l e types , i s
s t i l l supported for compatability. Filenames under t h i s convention are
as follows:

B_filename Binary (Object) f i l e
C_filename Command input f i l e
L_filename Listing f i l e
M_filename Load map f i l e
0_filename Command.poutput f i l e
PH_filename Phantom command f i l e
filename Source f i l e or text f i l e
•filename SAVED.p(Executable) R-mode runfi le
#filename SAVED (Executable) V-mode runfi le

• f i l e -un i t

A number between 0 and 127 ('177, or octal 177)) assigned as a
pseudonym to each open file by PRIMOS. This number may be given in
place of a filename in certain commands, such as CLOSE. PRIMOS-level
internal commands require octal values. Each user is guaranteed at
least 16 file units at a time. The maximum number of units that a user
may have open simultaneously varies per installation; the default is
128. PRIMOS always reserves units 0 and 127 for its own use.

• file protection keys

See keys, file protection.

• home directory

The user ' s main working d i rec tory , i n i t i a l l y the login d i rec to ry . A
different d i rec tory may be selected with the ATTACH command.

• ident i ty

The addressing mode plus i t s associated reper to i re of computer
ins t ruc t ions . Programs compiled in 32R or 64R mode execute in the
R-identi ty; programs compiled in 64V mode execute in the V-ident i ty .
Programs compiled in 321 mode execute in the I - i den t i t y . R-ident i ty ,
V-identity and I - iden t i ty are also called R-mode, V-mode, and I-mode.

• internal command

A command that executes in PRIMOS address space. Does not overwrite
the user memory image. PRIMOS-defined abbreviations exist for internal
commands.

A - 3 December 1980

APPENDIX A PDR4130

• keys, f i l e protection

Specify f i l e protect ion, as in the PROTEC command.

0 No access
1 Read
2 Write
3 Read/Write
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write
7 All rights

• LDEV

Logical disk device number as printed by the command STATUS DISKS.
(See ldisk.)

• ldisk

A parameter to be replaced by the logical unit number (octal) of a disk
volume. It is determined when the disk is brought up by a STARTUP or
ADDISK command. Printed as LDEV by STATUS DISKS.

• logical disk

A disk volume that has been assigned a logical disk number by the
operator or during system startup.

• MFD

The Master File Directory. A special d i rectory tha t contains the names
of the UFDs on a par t icular disk or p a r t i t i o n . There i s one MFD for
each logical d isk .

• mode

An addressing scheme. The mode used determines the construction of the
computer instructions by a compiler or assembler. (See identity.)

• nodename

Name of system on a network; assigned when local PRIMOS system is
built or configured.

REV. 0

PDR4130 GLOSSARY

number representations

xxxxx
1xxxxx
$xxxxx

Decimal
Octal
Hexadecimal

• object file

See binary file.

• on-unit

A begin block (in PL/I) or subroutine (in FORTRAN, COBOL, or PL/I)
which i s activated by the condition mechanism to handle error
conditions. PRIMOS has on-units for a l l conditions i t recognizes.
Users may also define on-units within any procedure they wr i te .
User-written on-units take precedence over system ones.

• open

Active s t a te of a f i l e - u n i t . A command or program opens a f i l e -un i t in
order to read or write i t .

• output stream

Output from the computer that would usually be printed at a terminal
during command execution, but which is also written to a file if
COMOUTPUT command was given.

• packname

See volume-name.

• page

A block of 1024 16-bit words within a segment (512 words on Prime 300).

• partition

A portion [or all] of a multihead disk pack. Each partition is treated
by PRIMOS as a separate physical device. Partitions are an integral
number of heads in size, offset an even number of heads from the first
head. A volume occupies a partition, and a "partition of a disk" and a
"volume of files" are actually the same thing.

December 1980

APPENDIX A PDR4130

pathname

A m u l t i - p a r t name which uniquely s p e c i f i e s a p a r t i c u l a r f i l e (or
d i r e c t o r y) wi th in a f i l e system t r e e . A pathname (a l so c a l l e d
treename) g i v e s a path from the d i sk volume, through d i r e c t o r y and
s u b d i r e c t o r i e s , to a p a r t i c u l a r f i l e or d i r e c t o r y . See t h e d i s c u s s i o n
on Pathnames in Section 2 .

• PDEV

Physical disk unit number as printed by STATUS DISKS. (See pdisk.)

• pdisk

A parameter to be replaced by a physical d i sk u n i t number. Needed on ly
for ope ra to r commands.

• phantom user

A process running independent ly of a t e r m i n a l , under t h e c o n t r o l of a
CPL program or a command f i l e .

• procedure

In FORTRAN, a subrou t ine or func t ion . In PL/ I , any s u b r o u t i n e ,
func t ion , or program. (In PL/I/ procedures may c o n t a i n o the r
procedures .) In COBOL, the term usua l ly r e f e r s to one or more r e l a t e d
paragraphs or s e c t i o n s wi th in the Procedure D iv i s ion . Procedures
d i r e c t the computer to perform a p a r t i c u l a r o p e r a t i o n or a s e r i e s of
o p e r a t i o n s .

• p rocess

A particular program running in a particular address space.

• reserved characters

The following characters are reserved by PRIMOS for special uses. They
may not be used in file names.

() ' [] ! { } " " ? : ~ I < > @ + ' % \ (delete or rubout)

• runfile

Executable version of a program, consisting of the loaded binary file,
subroutines and library entries used by the program, COMMON areas,
initial settings, etc. (Created using LOAD or SEG.)

REV. 0

PDR4130 GLOSSARY

• SEG

Prime's segmented loading u t i l i t y .

• segment

A 65,536-word block of address space .

• segment d i r e c t o r y

A s p e c i a l form of d i r e c t o r y used in d i r e c t - a c c e s s f i l e o p e r a t i o n s . Not
to be confused with d i r e c t o r y , which means " f i l e d i r e c t o r y " .

• segno

Segment number.

• source f i l e

A file containing programming language statements in the format
required by the appropriate compiler or assembler.

• subdirectory

A directory that is in a UFD or another subdirectory.

• sub-UFD

Same a s s u b d i r e c t o r y .

• treename

A synonym for pathname.

• UFD

A User File Directory, one of the Directories listed in the MFD of a
volume. It may be used as a LOGIN name.

• un i t

See f i l e - u n i t .

A - 7 December 1980

APPENDIX A PDR4130

volume

A se l f - suf f ic ien t unit of disk s torage, including an MFD, a disk record
ava i l ab i l i t y t a b l e , and associated f i l e s and d i r e c t o r i e s . A volume may
occupy a complete disk pack or be a par t i t ion within a multi-head disk
pack.

• volume-name

A sequence of 6 or fewer characters labeling a volume. The name is
assigned during formatting (by MAKE) . The STATUS DISKS command uses
this name in its DISK column to identify the disk.

• word

As a unit of address space, two bytes or 16 bits.

REV. 0

PDR4130 DEFAULTS AND CONSTANTS

APPENDIX B

SYSTEM DEFAULTS AND CONSTANTS

TEFMINAL
f u l l duplex
X-ON/X-OFF d i s ab l ed

EDITOR (ED)
INPUT (TTY)
LINESZ 144
MODE NCKPAR
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPRQMPT
MODE PRALL
VERIFY

Symbols
BLANKS #
COUNTER @
CPROMPT $
DPRQMPT &
ERASE
ESCAPE ~
KILL ?
SEMICO ; end of line or command
TAB \
WILD I

SEGMENTED-LOADER (SEG)
Loading a d d r e s s : c u r r e n t TOP+l in

c u r r e n t procedure segment
Stack s i z e : '6000 words
L ibra ry : PFTNLB and IFTNLB l i b r a r i e s

VIRTUAL LOADER (LOAD)
Memory Locat ion: '122770 - '144000
Loading a d d r e s s : c u r r e n t *PBRK value
L ib ra ry : FTNLIB FORTRAN l i b r a r y
MODE: D32R
Sector Zero Base Area:

Base s t a r t a t l o c a t i o n '200
Base range ' 600 words

COMMON: Top = '077777

December 1980

APPENDIX B PDR4130

EXECUTION
A - r e g i s t e r value 0
B - r e g i s t e r va lue 0
X- reg i s t e r va lue 0
Program s t a r t address '1000
B i t s 4-6 of Keys:
000 16K, sector-address
001 32K, sector-address
010 64K, relative-address
011 32K, relative-address
110 64K, segmented-address

CONTROL-P or BREAK

PRIMOS
ERASE
INTERRUPT
KILL
Files:
created with protection
owner all access rights (7)
non-owner no access rights (0)

REV. 0 B

PDR4130 ASCII CHARACTER SET

APPENDIX C

ASCII CHARACTER SET

The standard character set used by Prime is the ANSI, ASCII 7-bit set,
shown in Tables C-l and C-2. This character set conforms to ANSI
X3.4-1968. (1963 variances are noted.)

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage.

• Output Parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software will
compute transmitted parity. Some controllers (e.g., MLC) may
have hardware to assist in parity generations.

• Input Parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit the
host software requirements. Some controllers (e.g., MLC) may
assist in parity error detection.

• The Prime internal standard for the parity bit is one, i.e., *200
is added to the octal value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical
escape character ~ and the octal value. The character is interpreted
by output devices according to their hardware. (For example, typing
"207 will enter one character into the text.)

CTRL-P ('220) is interpreted as a .BREAK.
.CR. ('215) is interpreted as a newline (.NL.)
11 (' 242) is interpreted as a character erase
? (*277) is interpreted as line kill
\ (V334) is interpreted as a logical tab (Editor)

December 1980

APPENDIX C PDR4130

Table C- l . ASCII Character Set (Non-Printing)

Control
Comments/Prime Usage Char

Null c h a r a c t e r - f i l l e r ~@
S t a r t of header (communications) AA
S t a r t of t e x t (communications) "B
End of t e x t communications AC
End of t ransmiss ion (communications) AD
End of I .D. (communications) ~E
Acknowledge a f f i rma t ive (communications) AF
Audible alarm (bel l) ~G
Back space one pos i t i on (ca r r i age c o n t r o l) "H
Physical h o r i z o n t a l t ab ~I
Line feed; ignored a s te rminal input " J
Physical v e r t i c a l t a b (ca r r i age c o n t r o l) ~K
Form feed (ca r r i age con t ro l) ~L
Carr iage r e t u r n (ca r r i age c o n t r o l) (1) "M
RRS-red ribbon s h i f t "N
BRS-black ribboon s h i f t "0
RCP-rela t ive copy (2) ~P
RHT-relative ho r i zon ta l t a b (3) ~Q
HLF-half l i n e feed forward (c a r r i a g e con t ro l) AR
RVT-relat ive v e r t i c a l t a b (4) (~S
HLR-half l i n e feed reverse (c a r r i a g e c o n t r o l) ~T
Negative acknowledgement (communications) "U
Synchronocity (communications) ~V
End of t ransmiss ion block (communications) ~W
Cancel "X
End of Medium ~Y
S u b s t i t u t e ~Z
Escape " [
F i l e sepa ra to r ~\
Group separa to r ~]
Record separa to r
Unit s epa ra to r

Notes

1. Interpreted as .NL. at the terminal.

2. .BREAK, at terminal. Relative copy in file; next byte
specifies number of bytes to copy from corresponding position
of preceeding line.

3. Next byte specifies number of spaces to insert.

4. Next byte specifies number of lines to insert.

Octal
Value

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

ASCII
Char

NULL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

REV. 0

PDR4130 ASCII CHARACTER SET

Table C-2. ASCII Character Set (Pr in t ing)

Octal
Value

240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

ASCII
Character

• SP (1)
i

H

$
%
&
i

(
)
*

+
t

-
,

/
0
1
2
3
4
5
6
7
8
9
:

i

<
=
>
p

(2)
(3)

(4)

(5)

(6)

OCTAL
Value

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

ASCII
CHaracter

§
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
~(7)
(8)

OCTAL
Value

340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

ASCII
Character

* (9)
a
b
c
d
e
f
g
h
i
J
k
1
m
n
o
P
q
r
s
t
u
V
w
X

y
z
{
1
}
- (10)
DEL (11)

December 1980

APPENDIX C PDR4130

Notes

1. Space forward one position

2. Terminal usage - erase previous character

3. *in British use

4. Apostrophe/single quote

5. Comma

6. Terminal usage - kill line

7. 1963 standard T; terminal use - logical escape

8. 1963 standard 4

9. Grave

10. 1963 standard ESC

11. Rubout - ignored

REV. 0

PDR4130 ERROR MESSAGES

APPENDIX D

ERROR MESSAGES

INTRODUCTION

Error messages are given in the following order:

SEG Leader Error Messages
loader Error Messages
Run-Time Error Messages
Batch Error Messages and Warnings

In each group e r rors are l i s t ed a lphabet ical ly .

Run-time error messages beginning with a filename, device name,
UFDname, e t c . , are alphabetized according to the f i r s t word which i s
constant. The user should have no trouble in determining t h i s word
(the second word in the message). Leading a s t e r i s k s , e t c . , are ignored
in alphabetizing. All run-time er rors have been grouped together to
f a c i l i t a t e lookup by the user.

D - 1 December 1980

APPENDIX D PDR4130

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

User is attempting to load file which has faulty code. The file
may not be an object file or it may be incorrectly compiled.
Fatal error, the load must be aborted.

CAN'T LOAD IN SECTORED MODE

The Loader is attempting to load code in sectored mode which has
not been compiled in sectored mode. This could arise if trying to
load a module compiled or assembled in 16S or 32S mode. It is
unlikely that the average applications programmer will encounter
this. Fatal error, abort load.

CAN'T LOAD IN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode which is not
compiled in that mode. This would arise if:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and its mode
is not specified.

In case 1, the user should recompile the program.

In case 2, which the average applications programmer is unlikely
to encounter, the PMA module must be modified. Fatal error, abort
load.

COMMAND ERROR

An unrecognized command was entered or the filenames/parameters
following the command are incorrect. Usually not fatal.

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

An attempt was made to load a 64R mode program, causing a
reference to an illegal segment number. Recompile in 64V mode.
Fatal error, abort load.

REV. 0 D

PDR4130 ERROR MESSAGES

ILLEGAL SPLIT ADDRESS

Incorrect use of the Loader's SPLIT command. Segments may be
split at "4000 boundaries only (i.e., '4000, '10000, '14000, etc.')
Not fatal; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT

An attempt was made to load a 64R mode progran wherein COMMON
would be allocated to an illegal segment number. Recompile in 64V
mode. Fatal error, abort load.

NO FREE SEGMENTS TO ASSIGN

All SEG's segments have been allocated; no more are available at
present. Use SYMBOL command to eliminate COMMON from assigned
segments, thus reducing the number of assigned segments required.
(User may need larger version of SEG and PRIMOS) . Fatal error,
abort load.

NO ROOM IN SYMBOL TABLE

Unlikely to occur; no user solution. A new issue of SEG with a
bigger symbol table is required. Check with analyst. As a
temporary measure, user may try to reduce number of symbols used
in program. Fatal error, abort load.

REFERENCE TO UNDEFINED SEGMENT

Almost always caused by improper use of the SYMBOL command to
allocate initialized COMMON. Initialized COMMON cannot be located
with the SYMBOL command; use R/SYMBOL or A/SYMBOL instead.

SECTOR ZERO BASE AREA FULL

Extremely unlikely to occur. Not correctable at applications
level. Check with analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been made to load a 64R mode program. The program
has exceeded 64K and is trying to be loaded over code previously
loaded. Recompile in 64V mode. Fatal error, abort load.

December 1980

APPENDIX D PDR4130

LOADER ERROR MESSAGES

ALREADY EXISTS !

An attempt is being made to define a new symbol; however, the
symbol name is already a defined symbol in the symbol table.

BAD OBJECT FILE

The object text is not recognizable. This usually occurs when an
attempt is made to load source code or when the object text was
compiled or assembled for segmented loading.

BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use
the AU command to generate base areas at regular intervals, or use
the SETB or LOAD commands to specifically place base areas.

CAN'T DEFER COMMON, OLD OBJECT TEXT

The Defer Common command has been given and a module created with
a pre-Rev.14 compiler or assembler has been encountered. It is
not possible to defer Common in this case. The module must be
recreated with a Rev.15 compiler or assembler.

CAN'T - PLEASE SAVE

The Execute command has been given for a run file which has
required virtual loading. SAve the runfile and give the Execute
command.

CM$

Command line error. Unrecognized command given. Not fatal.

COMMON OUT OF REACH

Common above ' 100000 is out of reach of the current load mode
(16S, 32S or 32R) . Use the MCde command to set the load mode to
64R.

REV. 0 D

PDR4130 ERROR MESSAGES

COMMON TOO LARGE

Definition of this common block causes common to wrap around
through zero. Moving the top of common - with the CCmmon command
- may help.

sname ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine Common block sname to a
longer length. The user's program should be examined ^for
consistent Common definitions. At the very least the longest
definition for a Common block should be first.

xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a second level of
indirection at location xxxxxx. This message usually results when
an attempt is made to load code compiled or assembled for 32R mode
in 64R mode. It can also happen if code has accidentally been
loaded into base areas as the result of a bad load command
sequence.

sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the
instruction. No base areas are within reach except sector zero.
The last referenced symbol was sname. This message is only
generated when the SZ command has been given. Sname may be the
name of a Common block, the name of the routine to which the link
should be made, or the name of the module being loaded.

xxxxxx NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for module which was created
with a pre-Rev.14 compiler or assembler. No base area is created.
Recreate the object text with a Rev.15 compiler or assembler.
This is not a fatal error.

PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area
reserved for Common. Use the loader's CQnmon command to move
Common up higher.

D - 5 December 1980

APPENDIX D PDR4130

PROGRAM TOO LARGE

The program has loaded into the last location in memory and has
wrapped around to load in Location 0. The program size must be
decreased. Alternatively, compile in 64V mode and use SEG.

REFERENCE TO UNDEFINED COMMON

An attempt is being made to link to a Common name which has not
been defined. Tnis usually happens to users creating their own
translators.

SECTORED LOAD MODE INVALID

A module compiled or assembled to load in R mode has been loaded
in S mode. Use the MOde command to reset the load mode. It might
be a good idea to be sure that all modules are correctly written,
since the default load mode is 32R.

SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYmbol
command and the old symbol does not exist.

SYMBOL TABLE FULL

The symbol table has expanded down to location '4000. The last
buffer cannot be assigned to the symbol table. Rebuild LOAD to
load in higher memory locations, or reduce the number of symbols
in the load.

SYMBOL UNDEFINED

An attempt is being made to equate two symbols; however, the old
symbol is an undefined symbol in the symbol table.

64R LOAD MODE INVALID

A module compiled or assembled to run in only 32K of memory is
being loaded in 64R mode. Recompile or reassemble or change the
load mode with the loader's MOde command.

REV. 0 D -

PDR4130 ERROR MESSAGES

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode

Attempt t o perform o p e r a t i o n s in segments to which user has no
r i g h t .

****AD R-mode funct ion

Overflow or underflow in doub le -p rec i s ion a d d i t i o n / s u b t r a c t i o n
(A$66,S$66) .

All f i l e u n i t s in u s e . F i l e System

User has reques ted use of a f i l e un i t when he a l r e a d y has the
maximum al lowable number of f i l e u n i t s open. [E$FUIU]

ALL REMOTE UNITS IN USE F i l e System

Attempt made to a s s ign a remote u n i t when none a r e a v a i l a b l e .
(Network e r r o r) [E$FUIU]

**** ALOG*ALOG 10 - ARGUMENT <=0 V-mode func t ion

Argument not g r e a t e r than zero used in logar i thm (ALOG, ALOG 10)
func t ion .

filename ALREADY EXISTS Old f i l e c a l l

Attempt to c r e a t e a f i l e or UFD with t h e name of one a l r e a d y
e x i s t i n g . [CZ]

Already e x i s t s . F i l e System

Attempt made to c r e a t e , in the UFD, a sub-UFD with the same name
as one a l r e a d y e x i s t i n g . (CREA$$) [E$EXST]

****AT R-^node funct ion

Both arguments a r e zero in the ATAN2 func t ion .

**** ATAN2 - BOTH ARGUMENTS = 0 V-mode funct ion

Both arguments a r e zero in the ATAN2 f u n c t i o n .

D - 7 December 1980

APPENDIX D PDR4130

**** ATTDEV - BAD UNIT V-mode call

Incorrect logical device unit number in the ATTDEV subroutine
call.

BAD CALL TO SEARCH Old file call

Error in calling the SEARCH subroutine, e.g., incorrect parameter.
[SA]

Bad command format PRIMOS

User has issued an illegal command line. Command is ignored.
[E$CMND]

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the
programmer or by a system problem. [SS]

Bad DAM file. File System

The DAM file specified has been corrupted - either by the
programmer or by a system problem. (PRWF$$, SRCH$$). [E$BDAM]

Bad key in call. File System

Incorrect key value specified in subroutine argument. (ATCH$$,
RDEN$$, SATR$$, SRCH$$, SGDR$$) [E$BKEY]

BAD PARAMETER Old file call

Incorrect parameter value in subroutine call. [SA]

Bad parameter. PRIMOS

Incorrect parameter value in subroutine call. [E$BPAR]

BAD PASSWORD Old file call

Incorrect passvvord specified in ATTACH subroutine. Returns to
PRIMOS level attached to no UFD. [AN]

REV. 0 D

PDR4130 ERROR MESSAGES

Bad password. File System

Incorrect password specified in ATCH$$ subroutine. Returns to
PRIMOS level attached to no UFD. [ATCH$$] [E$BPAS]

Note

lb protect UFD privacy the system does not allow the
user to trap BAD PASSWORD errors.

BAD RTNREC PRIMOS

System error.

Bad segment dirunit. File System

Error generated in accessing segment directory, i.e., PRIMOS file
unit specified is not a segment directory. (SRCH$$) [E$BSUN]

Bad stack format. PRIMOS
Bad stack format signalling.

Condition mechanism cannot perform requested action because the
command processor stack has been damaged (system error). User is
returned to PRIMOS command level. [E$STKF, E$STKS]

BAD SVC PRIMOS

Bad supervisor call. In FORTRAN usually caused by program writing
over itself.

Bad truncate of segment dir. File System

Error encountered in truncating segment directory. (SGDR$$)
[E$BTRAN]

Bad unit number. File System

PRIMOS file unit number specified is invalid - outside legal
range. (PRWF$$, RDEN$$, SRCH$$, SGDR$$). [E$BUNT]

Bad use of exit. PRIMOS

The condition mechanism sends this fatal message. User is
returned to PRIMOS command level. [E$NEXP]

December 1980

APPENDIX D PDR4130

Beginning of f i l e . F i l e System

Attempt was made to access l o c a t i o n s before the beginning of the
f i l e . (PRWF$$, RDEN$$, SGDR$$) [E$BOF]

****BN n R-mode funct ion

Device e r r o r in REWIND command on FORTRAN l o g i c a l u n i t n .

Buffer too s m a l l . F i l e System

Buffer a s defined i s not l a r g e enough to accomodate e n t r y t o be
read i n t o i t . (RDEN$$) [E$BFTS]

Command l i n e t r u n c a t e d . PRIMOS

An i l l e g a l command l i n e has been r e c e i v e d . The command i s no t
executed , and the user i s re turned to PRMOS command l e v e l .
[E$TRCL]

Concealed s tack overf low. PRIMOS

System e r r o r . (Generally sen t by the c o n d i t i o n mechanism.)
[E$CSOV]

Crawlout unwind f a i l e d . PRIMOS

System e r r o r . (General ly sen t by t he cond i t i on mechanism.)
[E$CRUN]

**** DATAN - BAD ARGUMENT V-mode funct ion

The second argument in the DATAN2 funct ion i s z e r o .

****DE R-mode funct ion

The exponent of a doub le -p rec i s ion number has overf lowed.

The Device i s in u s e . F i l e System

Attempt was made to ASSIGN a device c u r r e n t l y ass igned to another
u s e r . [E$DVIU]

REV. 0 D - 10

PDR4130 ERROR MESSAGES

Device not assigned. File System

Attempt was made to perform I/O operations on a device before
assigning that device. [E$NASS]

Device is not started. File System

Attempt was made to access a disk not physically or logically
connected to the system. If disk must be accessed, systems
manager must start it up. [E$DNS]

**** DEXP - ARGUMENT TOO LARGE V-mode function

The argument of the DEXP function is too large; i.e., it will
give a result outside the legal range.

**** DEXP - OVERFLOW*UNDERFLOW V-mode function

An overflow or underflow condition occurred in calculating the
DEXP function.

Tne directory is damaged. File System

UFD has become corrupted. (ATCH$$, CREA$$, GPAS$$, RDEN$$,
SATR$$, SRCH$$) [E$BUFD]. Calls to RDEN$$ return this as a
trappable error; other commands return to the PRIMOS command
level.

The directory is not empty. File System

Attempt was made to delete a non-empty directory. (SRCH$$)
[E$DNTE]

DISK FULL Old file call

No more room for creating/extending any type of file on disk.
[DJ]

The disk is full. File System

No more room for creating/extending any type of file on disk.
(CREA$$, PRWF$$, SRCH$$, SGDR$$). [E$DKFL]

11 December 1980

APPENDIX D PDR4130

Note

Space may be made a v a i l a b l e . Use t he i n t e r n a l PRIMOS
commands ATTACH, LISTF, and DELETE to remove f i l e s which
a r e no longer needed.

Disk 1*0 Error F i l e System

A r e a d / w r i t e e r r o r was encountered in access ing d i s k . Returns
immediately to PRIMOS l e v e l . Not c o r r e c t a b l e by a p p l i c a t i o n s
programmer. (ATCH$$, CREA$$, GPAS$$, PRWF$$, RDEN$$, SATR$$,
SRCH$$, SGDR$$). [E$DISK]

Disk i s w r i t e - p r o t e c t e d . F i l e System

An a t tempt has been made to wr i t e to a d i s k which i s
WRITE-protected. [E$WTPR]

DK ERROR Old f i l e c a l l

A r e a d / w r i t e e r r o r was encountered in access ing d i s k . [WB]

****DL R-mode funct ion

Argument was not g r e a t e r than zero in DLOG or DL0G2 func t i on .

**** DL0G*DL0G2 - ARGUMENT <=0 V-mode funct ion

Argument no t g r e a t e r than zero was used in DLOG or DL0G2 f u n c t i o n .

****DN n R-mode funct ion

Device e r r o r (end of f i l e) on FORTRAN l o g i c a l u n i t n .

**** DSIN*DC0S - ARGUMENT RANGE ERROR V-mode funct ion

Argument o u t s i d e l e g a l range for DSIN or DCOS f u n c t i o n .

**** DSQRT - ARGUMENT <0 V-mode funct ion

Negative argument in DSQRT func t ion .

****OT R-mode funct ion

Second argument i s zero in DATAN2 func t ion . (D$22)

REV. 0 D - 12

PDR4130 ERROR MESSAGES

DUPLICATE NAME Old f i l e c a l l

Attempt to c rea te / rename a f i l e with the name of an e x i s t i n g f i l e .
[CZ]

****DZ R-mode funct ion

Attempt to d i v i d e by zero (d o u b l e - p r e c i s i o n) .

End of f i l e . F i l e System

Attempt to access l o c a t i o n a f t e r the end of the f i l e . (PRWF$$,
RDEN$$, SGDR$$) [E$EOF]

****EQ R-mode funct ion

Exponent overf low. (A$81)

****EX R-mode funct ion

Exponent funct ion va lue too l a r g e in EXP or DEXP func t i on .

**** EXP - ARGUMENT TOO LARGE V-mode funct ion

The argument of t he EXP funct ion i s too l a r g e , i . e . , i t w i l l g ive
a r e s u l t o u t s i d e t h e l e g a l r ange .

**** EXP - OVERFLOW V-mode funct ion

Overflow occurred in c a l c u l a t i n g the EXP f u n c t i o n .

Fata l e r r o r in c r awlou t . PRIMOS

System e r r o r . [E$CRWL]

****FE R-mode funct ion

Error in FORMAT s t a t e m e n t . FORMAT s t a t emen t s a r e no t complete ly
checked a t compile t i m e . (F$IO)

D - 13 December 1980

APPENDIX D PDR4130

File in use. File System

Attempt made to open a file already opened or to close/delete a
file opened by another user, etc. (SRCH$$) [E$FDEL]

Note

At rev 18, FUTIL no longer closes open file units when it
is invoked. Therefore, command files which depend on
FUTIL to close units may receive "File in Use" or "File
Open on Delete" messages. To avoid this message, close
files explicitly, using the CLOSE command.

FILE OPEN ON DELETE File System

Attempt made to delete a file which is open. (SRCH$$) [E$FDEL]

Note

At rev 18, FUTIL no longer closes open file units when it
is invoked. Therefore, command files which depend on
FUTIL to close units may receive "File in Use" or "File
Open on Delete" messages. To avoid this message, close
files explicitly, using the CLOSE command.

The file is too long. File System

Attempt made to increase size of segment directory beyond size
limit. (SGDR$$) [E$FITB]

****FN n R-mode function

Device error in BACKSPACE command on FORTRAN logical unit n.

**** p$BN - BAD LOGICAL UNIT V-mode function

FORTRAN logical unit number out of range.

REV. 0 D - 14

PDR4130 ERROR MESSAGES

**** F$FLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to d iv ide by z e r o .

**** p$FLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a d o u b l e - p r e c i s i o n number has exceeded maximum.

**** FSFLEX - REAL => INTEGER CONVERSION ERROR 64V mode

Magnitude of r e a l number too g r e a t for i n t ege r c o n v e r s i o n .

**** F$FLEX - SINGLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to d i v i d e by z e r o .

**** F$FLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a s i n g l e - p r e c i s i o n number has exceeded maximum.

**** F$IO - FORMAT ERROR V-rode funct ion

Inco r r ec t FORMAT s t a t e m e n t . FORMAT s t a t emen t s a r e no t comple te ly
checked a t compile t ime .

**** F $ I O - FORMAT*DATA MISMATCH V-mode funct ion

Input da t a does no t correspond to FORMAT s t a t e m e n t .

**** p$IO - NULL READ UNIT V-mode funct ion

FORTRAN l o g i c a l u n i t for READ s ta tement no t conf igured p r o p e r l y .

****U R-mode funct ion

Exponent ia t ion exceeds i n t ege r s i z e . (E$ll)

ILLEGAL INSTRUCTION AT o c t a l - l o c a t i o n R mode and 64V mode

An i n s t r u c t i o n a t o c t a l - l o c a t i o n cannot be i d e n t i f i e d by t he
computer.

D - 15 December 1980

APPENDIX D PDR4130

Illegal name. File System

Illegal name specified for a file or UFD. (CREA$$, SRCH$$)
[E$BNAM]

Illegal remote reference. File System

Attempt to perform network operations by user not on network.
[E$IREM]

ILLEGAL SEGNO 64V mode

Program referenced a non-existent segment or a segment number
greater than those available to the user.

Illegal treename. File System

The string specified for a treename is syntactically incorrect.
[E$ITRE]

****IM R-mode function

Overflow or underflow occurred during a multiply. (Mll, Ell)

filename IN USE Old file call

Attempt made to open a file already opened, or to close/delete a
file opened by another user, etc. [SI]

Insufficient access rights. File System

User does not have access right to file, or does not have write
access in a UFD when attempting to create a sub-UFD. (CREA$$,
GPAS$$, SATR$$, SRCH$$, SGDR$$) [E$NRIT]

Invalid argument to command. PRIMOS

A command has been issued with an illegal argument. The command
is not executed. [E$BARG]

Invalid segment number. File System

Attempt made to access segment number outside valid range.
[E$BSGN]

REV. 0 D - 16

PDR4130 ERROR MESSAGES

****I/0 error on logical unit <n>

This FORTRAN error message is usually followed by a second message
that gives more precise information on the problem. Two points to
remember are:

• FORTRAN'S method of identifying "logical units" does not
necessarily match the unit numbers given by the STATUS
UNITS command;

• FORTRAN may not consider a file unit "open" unless it is
open in the needed mode. (For example, a file opened for
reading only would still be considered closed for writing.)

**** 1**1 _ ARGUMENT ERROR V-mode function

Exponentiation exceeds integer size.

****LG R-̂ node function

Argument not greater than zero in ALOG or ALOG10 function.

Max number of users exceeded. PRIMOS

The maximum allowable number of users are already using the
system. (This may mean that the operator has used the MAXUSR
command to decrease the number of users temporarily.)

Max remote users exceeded. File system

No more users may access the network. [E$TMRU]

Name is too long. File System

Length of name in argument list exceeds 32 characters. [E$NMLG]

NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log
out to release assigned segments and try again later.

No phantoms are available. File system

An attempt has been made to spawn a phantom. All configured
phantoms are already in use. [E$NPHA]

D - 17 December 1980

APPENDIX D PDR4130

No on-unit found. Condition mechanism

Condition mechanism cannot take action. User is returned to
PRIMOS command level. [D$NOON]

No room. File System

An attempt has been made to add to a table of assignable devices
with a DISKS or ASSIGN AMLC command and the table is already
filled. [E$ROOM]

No timer. File System

Clock not started. System error. [E$NTIM]

NO UFD ATTACHED Old file call

User not attached to a UFD [AL, SL] . Usually occurs after attempt
to attach with a bad password.

No UFD attached. File System

User not attached to a UFD. (ATCH$$, CREA$$, GPAS$$, SATR$$,
SRCH$$). [E$NATT] Usually occurs after attempt to attach with a
bad password.

NO VECTOR R and 64V mode

User error in program has caused PRIMOS to attempt to access an
unloaded element.

1. A UII, PSUr or FLEX to location 0
2. Trap to location 0
3. SVC switch on, SVC trap and location '65 is 0.

Not a segment directory. File System

Attempt to perform segment directory operations on a file which is
not a segment directory. (SRCH$$) [E$NTSD]

NOT A UFD. Old file call

Attempt to perform UFD operations on a file which is not a UFD.
[AR]

REV. 0 D - 18

PDR4130 ERROR MESSAGES

Not a UFD File System

Attempt to perform UFD operations on a file which is not a UFD.
(ATCH$$, GPAS$$, SRCH$$). [E$NTUD]

device-name NOT ASSIGNED PRIMOS

User program has attempted to access an I/O device which has not
been assigned to the user by a PRIMOS command.

filename NOT FOUND Old file call

File specified in subroutine call not found. [AH, SH]

filename NOT FOUND File System

File specified in subroutine call not found. (ATCH$$, GPAS$$,
SATR$$, SRCH$$) [E$FNTF]

filename not found in segment dir. File System

Filename specified in subroutine call not found in specified
segment directory. (SRCH$$, SGDR$$) [E$FNTS]

NULL READ UNIT PRIMOS

Program has attempted to read with a bad unit number. This may be
caused by the program overwriting itself (array out of bounds) .

OLD PARTITION File System

Attempt to perform, in an old file partition, an operation
possible only in a new file partition; e.g., date/time
information access. (SATR$$) [E$OLDP]

Operation illegal on directory. PRIMOS

User has tried to perform an operation on a directory that is not
allowed (such as editing it). [E$DIRE]

****PA n R-mode function

PAUSE statement n (octal) encountered during program execution.

- 19 December 1980

APPENDIX D PDR4130

**** PAUSE n V-mode function

PAUSE statement n (octal) encountered during program execution.

POINTER FAULT 64V mode

Reference has been, made to an argument or instruction not in
memory. The tvo usual causes of this are an incomplete load
(unsatisfied references), or incomplete argument list in a
subroutine or function call.

Pointer mismatch found. PRIMOS

Internal file pointers have become corrupted. No user remedial
action possible. System Administrator must correct. [E$PTRM]

PROGRAM HALT AT octal-location R mode and 64V mode

Program control has been lost. The program has probably written
over itself or the load was incomplete (R-mode).

PRWFIL BOF Old file call

Attempt by PRWFIL subroutine to access location before beginning
of file. [PG]

PRWFIL EOF Old file call

Attempt by PRWFIL subroutine to access location after end of file.
[PE]

PRWFIL POINTER MISMATCH Old file call

The internal file pointers in the PRWFIL subroutine have become
corrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a
PRIMOS file unit number on which no file is open.

PTR MISMATCH File System

Internal file pointers have become corrupted. ND user remedial
action possible. (ATCH$$, CREA$$, GPAS$$, PRWF$$, RDEN$$, SATR$$,
SRCH$$, SGDR$$). Consult system manager.

REV. 0 D - 20

PDR4130 ERROR MESSAGES

The remote l i n e i s down. F i l e System

Remote c a l l - i n acces s to computer no t enab led . [E$RLDN]

****KI R-inode funct ion

Argument i s too l a r g e for r e a l - t o - i n t e g e r conve r s ion . (C$12)

****RN n R-mode funct ion

Device e r r o r or e n d - o f - f i l e in READ r.tatement on FORTRAN l o g i c a l
u n i t n .

****SE R-mode funct ion

Single p r e c i s i o n exponent overf low.

SEG-DIR ER Old f i l e c a l l

Error encountered in segment d i r e c t o r y o p e r a t i o n . [SQ]

Segment d i r e c t o r y e r r o r . PRIMOS

Error encountered in segment d i r e c t o r y o p e r a t i o n . [SQ] [E$SDER]

Segdir un i t i s no t open. F i l e System

Attempt has been made to re fe rence a segment d i r e c t o r y which i s
not open. (SRCH$$) [E$SUNO]

Semaphore overf low. F i l e System

System e r r o r . [E$SEMO]

**** SIN*COS - ARGUMENT TOO LARGE V-mode funct ion

Argument too l a r g e for SIN or COS func t ion .

****SQ R-mode funct ion

Negative argument in SQRT or DSQRT func t ion .

D - 21 December 1980

APPENDIX D PDR4130

**** SQRT - ARGUMENT<0 V-mode functon

Negative argument in SQRT funct ion .

****ST n R-mode funct ion

STOP s ta tement n (oc ta l) encountered dur ing program execu t i on .

**** STOP n V-mode funct ion

STOP s ta tement n (oc ta l) encountered during program execu t ion .

****SZ R-mode funct ion

Attempt to d i v i d e by zero (s i n g l e - p r e c i s i o n) .

Stack overflow in c rawlou t . PRIMOS

System e r r o r . [E$CROV]

Too many s u b d i r e c t o r y l e v e l s . F i l e System

Attempt to c r e a t e more than 72 l e v e l s of sub-UFDs. This e r r o r
occurs on ly on old f i l e p a r t i t i o n s ; new f i l e p a r t i t i o n s have no
l i m i t on UFD l e v e l s . [E$TMUL]

UFD FULL Old f i l e c a l l

No more room in UFD. [SK]

The UFD i s f u l l . F i l e System

UFD has no room for more f i l e s and/or sub-UFD's. Occurs on ly in
old f i l e p a r t i t i o n s . (CREA$$, SRCH$$) [E$FDFL]

UFD OVERFLOW Old f i l e c a l l

No more room in UFD.

Unable to find f a u l t frame. Condit ion mechanism

A c a l l was made to CNSIG$, but CNSIG$ could not f ind ' t h a t any
cond i t ion had been r a i s e d .

REV. 0 D - 22

PDR4130 ERROR MESSAGES

UNIT IN USE Old file call

Attempt to open file on PRIMOS file unit already in use. [SI] .

Unit in use. File System

Attempt to open file on PRIMOS file unit already in use.
(SRCH$$). [E$UIUS]

UNIT NOT OPEN Old file call

Attempt to perform operations with a file unit number on which no
file has been opened. [PD, SD]

Unit not open. File System

Attempt to perform operations with a file unit number on which no
file has been opened. (PRWF$$, RDEN$$, SRCH$$, SGDR$$). [E$UNOP]

UNIT OPEN ON DELETE Old file call

Attempt to delete file without having first closed it. [SD]

****WN n R-mode function

Device error or end-of-file in WRITE statement on FORTRAN logical
unit n.

****XX R-mode function

Integer argument >32767.

D - 23 December 1980

APPENDIX D PDR4130

BATCH WARNINGS AND MESSAGES

Bad $$ command.

(Fatal) A command file was submitted using the JOB command that had
a $$ line other than the $$ JOB line as the first non-comment^line.
The command file should be changed so that the "$$" line is legal.
The use of $$ is reserved for future expansion by BATCH.

(Changes made)

(Response) The changes specified in a JOB -CHANGE operation have
been made. If the job is initiated after the changes are made,
then it will execute with the specified changes in place. The job
status will be displayed after the above message is typed out.

Command file required as first argument on submission.

(Fatal) The JOB command was given with job options (such as -HOME,
-PRIORITY, -CPTIME, etc.) but no command file was seen before
those options. The syntax is "JOB pathname [-options]".

Cpu limit must be specified.

(Fatal) The queue referred to by a -QUEUE option during job
submission is defined such that the -CPTIME option is a required
parameter (i.e., default CPU limit for that queue is greater than
the maximum CPU limit for that queue) . The job should be
resubmitted with the -CPTIME option specified. To determine the
maximum limits for queues, use BATGEN -DISPLAY.

Elapsed time limit must be specified.

(Fatal) The queue referred to by a -QUEUE option during job
submission has a default elapsed time limit greater than its
maximum time limit. Resubmit the job with the -ETIME option
specified.

End of line.

(Fatal) One of the Batch programs was expecting to find more
information on the command l i n e , but end-of-line was found instead.
The message will generally contain more information on what was
expected. Re-enter the command with the additional requested
information.

REV. 0 D - 24

PDR4130 ERROR MESSAGES

End of line. Illegal <option> argument

(Fatal) One of the job parameter options specified on the JOB
command line had no argument. The information required by that
option should be supplied when the command is re-entered.

File has no non-comment lines. <filename> (JOB)

User has tried to submit a CPL program or command file that
contains no commands. (The file either is empty or is made up
entirely of comments.)

Home ufd required.

(Fatal) The -HOME option was not present on the JOB or the
(optional) $$ JOB line during submission, and the program was
unable to determine the home attach point of the submitting job.
Resubmit the job, and include the -HOME option followed by the
absolute pathname of the UFD where the job is to execute. If the
pathname cannot fit, use a shorter version of it when you resubmit
the command file, after editing the file to include an "ATTACH"
command that descends the remaining sub-ufds to reach the
destination.

Home=<pathname>

(Response) During job submission, the -HOME option was not
specified on the command line or in the command file ($$ JOB), so
the JOB command determined the home attach point of the submitting
job. This message is typed out to remind the user that the -HOME
option was not specified. The job did successfully submit,
however.

Illegal -CHANGE option.

(Fatal) The options -QUEUE and -PRIORITY are illegal during a
-CHANGE operation using the JOB command, as queue and queue
priority of a job cannot be changed. Cancel or abort the job and
resubmit it into the appropriate queue with the desired queue
priority.

Illegal combination. <option>

(Fatal) A job parameter (such as -ACCT, -HOME or -QUEUE, etc.) was
specified on the same JOB command line as an option to perform an
action (such as -CANCEL, -DISPLAY, -ABORT, etc.). Use separate JOB
commands to perform separate functions.

D - 25 December 1980

APPENDIX D PDR4130

Note

This message can also resu l t from giving the -FUNIT option
for a CPL program. CPL f i l e s cannot specify FUNITS.

I l legal l imi t .

(Fatal) The parameters supplied to the -CPTIME or -ETIME options
during job submission/changing were not legal l i m i t s , i . e . they
were l e s s than or equal to 0, or were not legal decimal numbers and
not the s t r ing "None". Re-enter the command with legal l i m i t s .

I l legal name.

(Fatal) One of the Batch programs was expecting a name or command,
but i t read an unquoted token beginning with a dash (' - ') #
indicating that an option was present.

I l legal number. <text> (JOB)

(Fatal) The argument for the -FUNIT or -PRIORITY option during job
submission using the JOB command was not a legal decimal number.
Re-enter the command l ine with legal numeric parameters.

I l legal option.

(Fatal) One of the Batch programs was expecting an option, i . e . , an
unquoted token beginning with a dash (' - ') . Re-enter the command
l ine with a legal format.

I l legal queue name. <text> (JOB)

(Fatal) The queue name specified after a -QUEUE option while
submitting or changing a job did not comply with queue name format
ru l e s . Use BATGEN -STATUS or -DISPLAY to determine the names of
legal queues.

Incorrect user-name.

(Fatal) A command f i l e was submitted using the JOB command tha t had
a $$ JOB l ine as the f i r s t non-comment l i n e , but the user-name
specified af ter the "JOB" specifier did not match the user-name of
the submitting user . Edit the command f i l e and change the
user-name in the $$ JOB l ine to the user-name of the submitter.

REV. 0 D - 26

PDR4130 ERROR MESSAGES

*** Invalid batch database, please contact your system administrator.

(Severe) The running job detected an error (such as disk failure,
pointer mismatch, or misprotected file) in the Batch system
database. It will flag the database as invalid. Notify the System
Administrator, who has the responsibility for re-initializing the
database (or running *FIXBAT or FIXRAT as the case may be) . The
BATCH and JOB commands will be inoperative until the situation is
resolved.

<nn> is out of range. <option>

(Fatal) The numbers supplied as parameters to the -FUNIT or
-PRIORITY options during job submission/changing were out of range.
The range for -FUNIT is from 1 to 126; that for -PRIORITY is from
0 to 9. The job should be resubmitted or changed with legal -FUNIT
and -PRIORITY values. Note that the system may be configured to
have fewer than 126 units per user at cold-start, and the -FUNIT
argument will be limited to the maximum configured unit number.

?JOB <extnam>(<intnam>) <status>.

(Warning) An attempt was made to perform an operation on a job
using the JOB command that could not be performed because of its
status: for example, trying to restart a completed job.

Job name required.

(Fatal) The options -CHANGE, -CANCEL, -ABORT, -RESTART, -HOLD and
-RELEASE all require a job identifier (internal or external name).
Re-enter the command with the job id. (For example: "JOB C.TOP
-HOLD", "JOB #10032 -ABORT").

Job not found.

(Fatal) The job referred to in a JOB command such as -CHANGE,
-CANCEL, -ABORT, -RESTART, -HOLD or -RELEASE, could not be found by
searching the active jobs list. This could mean one of three
things: that no job exists with that name, that all jobs that have
that name are not active jobs (i.e., have completed, aborted or
been cancelled), or that a job exists with that external name but
the user making the request is not the same user that originally
submitted the job.

- 27 December 1980

APPENDIX D PDR4130

(Job no longer restartable)

(Response) A JOB -CANCEL was performed on an executing job. The
job itself is not cancelled; it has been flagged as being
unrestartable (i.e., a -RESTART will abort the job but not restart
it) .

(Job not restartable)

(Warning) A JOB -RESTART was performed on a job that had been
flagged as unrestartable. An attempt will be made to abort the
job.

(Job restarted)

(Response) A JOB -RESTART was performed on a job, and the job has
been flagged as restartable. Although an error message may appear
after this message, the job will generally be restarted unless a
JOB -CANCEL or JOB -CHANGE -RESTART NO is done on it. Possible
errors after this message include "Insufficient access rights" if
the user is logged in as SYSTEM, and restarted another user's job
from a user terminal (not "-the supervisor terminal) , or if the
process recently logged out. "Not found" may also be returned in
this case.

*** Jobs are not being processed at this time.

(Severe) If followed by "*** Please contact your system
administrator immediately", it indicates that the Batch database
has not been initialized, or that something has happened to it
(like a disk head crash) . If followed by "*** Please try again
later", it indicates that while the database is still valid, the
Batch monitor was logged out using a method other than "BATCH
SYSTEM -STOP", and will verify the validity of the database when it
is started up. Either way, the user will be immediately returned
to command mode (i.e., the operation the user attempted will not be
performed) . This can be typed out by the BATCH or the JOB commands
when they start running.

Multiple jobs with this name (use internal name).

(Fatal) A reference was made to a job using a filename in the JOB
command, and there were at least 2 such jobs belonging to the user
making the reference that were active. The job-id must be used in
this case. Use JOB -STATUS ALL to determine the filenames and
job-ids of all jobs belonging to the user issuing the command.

REV. 0 D - 28

PDR4130 ERROR MESSAGES

Multiple occurance.

(Fatal) An option was specified twice during job submission or job
changing (example: JOB C__TEST -HOME HERE -HOME THERE) on either
the JOB or $$ JOB line. (If the option is specified once on the
JOB line and once on the $$ JOB line, no error will result and the
parameter on the JOB line will take precedence) . Re-enter the
command, specifying each option only once.

Must be first option.

(Fatal) The options -CHANGE, -CANCEL, -ABORT, -RESTART, -STATUS,
-DISPLAY, -HOLD and -RELEASE must be the first option on the JOB
command line (after a sometimes optional job identifier). Use the
JOB command several times to perform several operations.

No active jobs [named "<jobname>"] for user <username>.

(Response) There are no jobs belonging to that user that are
waiting, held, or executing.

The jobname is output if a jobname was specified for the -DISPLAY
or -STATUS command; otherwise it is omitted.

No job changes specified.

(Fatal) The -CHANGE option was given to the JOB command, but no
actual changes were specified on the command line. Specify changes
to be made after the -CHANGE option.

No jobs [named "<jobname>"] for user <username>.

(Response) This message is typed out by a JOB -DISPLAY ALL or
-STATUS ALL command, and indicates that there are no jobs belonging
to that user.

No longer executing.

(Fatal) A JOB -ABORT or JOB -RESTART was performed on a job that
had execution status, but by the time the execution file was read
in to determine the user number of the process, it had disappeared.
If the message "(Job restarted)" had been typed out, then the job
would be restarted.

D - 29 December 1980

APPENDIX D PDR4130

No queue available for job.

(Fatal) A job was submitted using the JOB command that did not use
the -QUEUE option to specify the queue to which it was to be
submitted, and no suitable queue could be found. Suitability for a
queue includes CPU and elapsed time limits being within the
confines of the queue, queue being unblocked, etc. Use the BATGEN
-STATUS or -DISPLAY command to yield a list of legal queues and
their status.,

No queues have waiting or held jobs.

(Response) A BATCH -DISPLAY command was issued, and there were no
queues that had any waiting or held jobs in them. A queue may have
one executing job in it, but an executing job is not considered a
waiting or held job.

No recent jobs [named <jobname>"] for user <username>.

(Response) There are no jobs belonging to that user (or in the
batch system if the user is SYSTEM) that were submitted, initiated,
aborted, completed or cancelled today.

No running jobs.

(Response) A BATCH -DISPLAY command was issued, and there were no
jobs that were currently running. It is possible for there to be
no running jobs and to have jobs waiting, however, even when the
monitor is running and there are free phantoms; there is always a
small amount of turnaround time between the submittal of a job and
the execution of a job.

Not an absolute treename.
t

(Fatal) The home ufd specified with the -HOME option during
submission using the JOB command (or changing of job parameters)
was a r e la t ive (pathname), i . e . , i t began with "*>". Re-submit the
job , giving an absolute pathname after the -HOME option.

Not your job.

(Fatal) A reference was made to a job using an internal name in the
JOB command, and the referenced job did not belong to the user
making the reference. Use "JOB -STATUS ALL" to obtain a list of
all jobs belonging to the user making the request.

REV. 0 D - 30

PDR4130 ERROR MESSAGES

Null home ufd.

(Fatal) The home ufd specified with the -HOME option during
submission using the JOB command (or changing of job parameters)
was a null string. Re-submit the job with an absolute pathname
after the -HOME option.

Please stand by.

(Response) This message and others like it ("File in use, please
stand by") will be output if the program being run is trying to
gain access to a file that is in use for more than 5 seconds.
After 20 seconds, the "File is use..." message will be output, and
after 30 seconds, the message "Timeout of 30 seconds has occurred"
will be output and the program will "give up". Usually this will
result in a fatal error, as it could indicate that system security
is broken.

Please wait.

(Response) This message asks that the user be patient because the
program he is running has been locking up the Batch database too
long and is not allowing other processes to have access to it. It
is not a fatal error. It generally only is output when a system is
heavily loaded, or when the current process has a very low priority
and does not run frequently.

Queue blocked.

(Fatal) The queue referred to by a -QUEUE option during job
submission is currently blocked to new submissions. Try it again
later, or use another queue.

Queue deleted.

(Fatal) The queue that the job was being submitted to was present
when it was first checked out, but by the time the command file had
been copied and some other activities had taken place, the queue
had been deleted. The job should be resubmitted to a different
queue.

Queue does not exist.

(Fatal) The -QUEUE option on the JOB command line or the (optional)
$$ JOB line referred to a queue that either did not exist or was in
the process of being deleted ("flagged for deletion") . The BATGEN
-STATUS or -DISPLAY command should provide a list of currently
available queues and their status, if the file that defines queues
is accessible by users.

- 31 December 1980

APPENDIX D PDR4130

Queue f u l l .

(Fatal) There a r e a l r eady 10,000 jobs (whether a c t i v e or i nac t i ve)
in t h e queue to which the job i s being submi t t ed . The queue must
be de le t ed and r e - c r e a t e d before more j obs can be submitted to i t ,
The system admin i s t r a to r should be asked to do t h i s . Meanwhile, i f
any o t h e r queues a r e a v a i l a b l e , t hey can be used ins tead by the
u s e r .

Regis ter s e t t i n g .

(Fata l) Regis te r s e t t i n g s a r e i l l e g a l in the NBatch subsystem
(except a s p a r t of a submitted command f i l e) . Re-enter the command
l i n e without the r e g i s t e r s e t t i n g .

Searching for f ree command f i l e , p lease stand by .

(Response) This and o ther messages l i k e "Queue i s in heavy
u s e . . . p l e a s e s tand by" mean t h a t many u s e r s a r e submi t t ing command
f i l e s a t once . The s i t u a t i o n should r e so lve i t s e l f in a s h o r t
amount of t ime .

Specif ied va lue i s ou t of r ange .

(Fatal) The -CPTIME or -ETIME op t ion spec i f i ed during job
submission or a -CHANGE ope ra t ion i s g r e a t e r than t he maximum
allowed by t he queue to which the job was submi t t ed . I h i s message
w i l l be preceded by a message i n d i c a t i n g t h e maximum l i m i t for t h a t
queue ("Cpu l i m i t i s xx" or "Elapsed time l i m i t i s xx") . If t he
l i m i t s cannot be lowered and the job s u c c e s s f u l l y r u n , then t r y a
queue with higher l i m i t s .

Syntax e r r o r . Regis ter s e t t i n g s a re i l l e g a l

(Warning) I h i s message i s ou tpu t i f e n d - o f - l i n e i s expected and a
r e g i s t e r s e t t i n g i s found i n s t e a d . Re-enter t h e command without
r e g i s t e r s e t t i n g s .

<text> seen when e n d - o f - l i n e expected .

(Fatal) <text> was seen when t h e r e should have been no more t e x t
(end of l i n e) . The command w i l l be ignored and the user w i l l be
re turned to PRIMOS l e v e l .

REV. 0 D - 32

PDR4130 ERROR MESSAGES

This job cannot be restarted.

(Response) Output by a JOB -DISPLAY command if the job being
displayed has had a JOB -CANCEL done to it while it was executing,
or was submitted with the -RESTART NO option. Any -RESTARTS done
to the job will abort the job (if they succeed) , but the job will
not be restarted.

(This job has already executed nn time(s)) .

(Response) Output by a JOB -DISPLAY command if the job being
displayed is executing and has already been executed. This is the
result of a JOB -RESTART being done on that job, or a system
cold-start after being brought down while the job was executing.

Too many options.

(Fatal) At least two options were entered that conflicted with each
other, such as JOB -DISPLAY -CHANGE or JOB C_TEST -ABORT -CANCEL.
Use separate JOB commands to perform separate operations.

Unknown option.

(Fatal) An option was entered to the BATCH or JOB command that was
not recognized.

Warning: the Batch monitor is still awaiting start-up instructions
from the operator, so jobs are not yet being processed.

The Batch monitor's phantom is running, but the operator has not
yet started the Batch subsystem. When the operator gives the start
command, the job will be submitted for execution.

Warning: jobs are not being processed at this time.

(Response) The Batch monitor is not running. No submitted jobs
will be executed until it has been started up. The operation
requested will then be performed. If the moni.tor is force-logged
out, or the system is shut down without the monitor logging itself
out, there may be a database problem as a result.

D - 33 December 1980

PDR4130 EDITOR COMMAND SUMMARY

APPENDIX E

EDITOR COMMAND SUMMARY

The following is an alphabetic list of each Editor command and its
function. Acceptable command abbreviations are underlined. For a
detailed description of all commands, see the Editor Reference Section
of The New User's Guide To EDITOR and RUNOFF.

Note

The string parameter in a command is any series of ASCII
characters including leading, trailing, or embedded blanks. A
semicolon terminates the command unless it appears within
delimiters (as in the CHANGE, MODIFY, or GMODIFY commands) or
is preceded by the escape character C).

Command

APPEND string

BOTTOM

BRIEF

Function

Appends string to the end of the
current line.

Moves the pointer beyond the last
line of the file.

Speeds editing by suppressing the
(default) verification responses to
certain Editor commands.

CHANGE/string-l/string-2/[G] [n] Replaces string-1 with string-2 for
n lines. " If G is omitted, only the
first occurrence of string-1 on each
line is changed; if G is present,
all occurrences on n lines are
changed.

DELETE [n]

DELETE TO string

DUNLOAD filename [n]

DUNLOAD filename TO string

ERASE character

Deletes n lines, including the
current line (default n=l) .

Deletes all lines up to but not
including line containing string.

Deletes n lines from current file
and writes them into filename.
(Default n=l.)

Same as DELETE...TO, but writes
deleted lines into filename.

Sets erase character to character.

December 1980

APPENDIX E PDR4130

FILE [filename]

FIND s t r i n g

FIND(n) s t r i n g

GMODIFY

IB s t r i n g

Writes t he c o n t e n t s of the c u r r e n t
f i l e in to filename and QUITS to
PRIMOS. If f i lename i s o m i t t e d ,
EDITOR w r i t e s in to t he c u r r e n t f i l e
and p r i n t s i t s name.

Moves t he po in t e r down to the f i r s t
l i n e beginning with s t r i n g .

Moves the p o i n t e r down to f i r s t l i n e
with s t r i n g beginning in column n .

Allows t he user to e n t e r a s t r i n g of
subcommands which modify c h a r a c t e r s
wi th in a l i n e .

The "INSERT BEFORE" command i n s e r t s
s t r i n g a s a new l i n e immediately
before t he c u r r e n t l i n e .

(ASR)
INPUT (PTR)

(TTY)
Reads t e x t from the spec i f i ed
input d e v i c e : ASR (Teletype
paper - tape reader) , PTR (high-speed
paper t ape reader) or TTY
(t e r m i n a l) . Default i s TTY.

INSERT s t r i n g

KILL c h a r a c t e r

LINESZ [n]

LOAD filename

LOCATE s t r i n g

LOCATE s t r i n g , *

MODE CKPAR

I n s e r t s s t r i n g a f t e r c u r r e n t l i n e .

Sets k i l l c h a r a c t e r to c h a r a c t e r .

Changes maximum l i n e l e n g t h .
(Minimum l i n e s z i s 10) . Linesz
changes the maximum l eng th of both
command l i n e s and input l i n e s .

Loads fi lename in to t e x t following
t he c u r r e n t l i n e .

Moves p o i n t e r forward to the f i r s t
l i n e con ta in ing s t r i n g , which may
con ta in lead ing and t r a i l i n g b l a n k s .

Moves p o i n t e r forward to each
occurrence of s t r i n g between
p o i n t e r ' s c u r r e n t p o s i t i o n and end
of f i l e .

P r i n t s c h a r a c t e r s a s r e a l c h a r a c t e r s
i f p a r i t y ' s on , a s o c t a l numbers
("nnn) i f p a r i t y ' s o f f .

REV. 0

PDR4130 EDITOR COMMAND SUMMARY

MODE COLUMN

MODE COUNT start increment width

MODE

MODE

MODE

MODE

MODE

MODE

MODE

NCKPAR

NCOLUMN

NCOUNT

NUMBER

NNUMBER

PRALL

PRUPPER

MODE PROMPT

MODE NPROMPT

Displays column numbers whenever
INPUT mode is entered.

PRINT

BLANK

SUPPRESS

Turns on the automatic incremented
counter.

Prints all characters as if they had
parity on (default) .

Turns off
(default) .

the column display

incrementing Suspends counter
(default) .

Displays l ine numbers in front of
printed l i n e .

Turns off the l ine number display
(default) .

Prints lower case characters
device has tha t capab i l i ty .

if

Prints all characters as upper case.
Precedes lower case characters with
an ~L and precedes upper case
characters with an "U if the device
is upper case only.

Prints prompt characters for INPUT
and EDIT modes.

Stops printing of INPUT and EDIT
prompt characters (default).

MODIFY/string-2/string-l/[G][n] Superimposes string-1 onto string-2
for n lines. If G is omitted, only
the first occurrence of string-1 on
each line is modified; otherwise
all occurrences of string-1 are
modified.

MOVE buffer-1 buffer-2
/string/

Move string or contents
of buffer-2 into buffer-1.

December 1980

APPENDIX E PDR4130

NEXT [n]

NFIND string

NFIND(n) string

NLOCATE string

OOPS

OVERLAY string

PAUSE

POINT line-number

PP [first] [last]

Moves the pointer n lines forward or
backward (default n=l) .

Moves pointer down to first line NOT
beginning with string.

Moves pointer down to first line in
which str ing does not start in
column n.

Finds the first line that does not
contain string anywhere in the line.

Undoes the last line changed and
returns it to its status before the
modification.

Superimposes string on current line.
Use tabs to start in middle of line,
use I to delete existing
characters. (A blank in the string
leaves the old character in place.)

Returns to operating system without
changing the Editor state.

Relocates
line-number

the pointer to

The POSITION PRINT command prints a
range of lines relative to the
current position without changing
the current position:

first number of lines away
from current position
to start printing

last relative number of lines
away from the current
position to stop
printing

If only one positive number is
specified, it is interpreted as the
ending line position (last) and the
default starting line is the current
line.

If only one negative number is
specified, it is interpreted as the
beginning position (first) and the
default ending line is the current
line.

REV. 0

PDR4130 EDITOR COMMAND SUMMARY

PRINT [n]

PSYMBOL

PTABSET tab-l...tab-8

If no numbers are given the default
PP -5 5, which prints from five
lines above to five lines below the
current position.

Prints the current line or n lines
beginning with the current line.
Moves pointer to last line printed.

Prints a list of current symbol
characters and their function.

Provides for a setup of tabs on
devices that have physical tab
stops.

(ASR)
PUNCH [n]

(PTP)

QUIT

QF

RETYPE string

SAVE [filename]

Punches n lines on high-
low-speed paper-tape punch.

or

Returns control to PRIMOS without
filing text. If file has been
modified EDITOR warns user and asks
"OK TO QUIT?"

The "QUIT FINAL" command lets the
user QUIT out of a modified file
without having the EDITOR ask if it
may throw away the work file.

The current line is replaced by
string.

Saves file without leaving EDITOR.
If user does not specifiy filename,
EDITOR saves into the file being
edited and prints its name.

December 1980

APPENDIX E PDR4130

SYMBOL name character Changes a symbol name to character.
Current

Name

KILL
ERASE
WILD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

default val ues are:

Default Characters

?
H

j

\
**
7
$
&

TABSET t a b - l . . . t a b - 8

TOP

UNLOAD filename [n]

UNLOAD filename TO s t r i n g

VERIFY

WHERE

XEQ [buffer]

*[n]

Sets up to eight logical tab stops
to be invoked by the tab symbol ().

Moves the pointer one line before
the first line of text.

Copies n lines into filename.

unloads lines from current file into
filename until string is found.

Displays each line after completion
of certain commands. (Default).

Prints the current line number.

Executes the contents of buffer. If
no buffer name is given, the last
command line is re-executed.

Causes preceding command to be
repeated n times as in:

F /;D;*10

which deletes the next ten lines
that begin with / . If n is
omitted, the command repeats until
the bottom of file is reached.

REV. 0

Index

I

I

K

INDEX

2 - 1 1 , 4-2

$$ JOB 10-4

&ARGS d i r e c t i v e 8-6, 8-9

&CALL d i r e c t i v e 8-7

&CHECK...&ROUTINE d i r e c t i v e 8-8

&DATA groups 8-16

&DATA g roups , t e rmina l inpu t in
8-17

&DATA...&END d i r e c t i v e 8-7

&DEBUG d i r e c t i v e 8-4, 8-7

&D0 (i t e r a t i o n) ...SEND d i r e c t i v e
8-7

&D0 groups 8-14

&D0...&END directive 8-6

& EXPAND directive 8-7

&GOTO...&LABEL directive 8-7

&IF directive 8-12

&IF directive, nested 8-13

&IF...&THEN...&ELSE directive
8-6, 8-13

&ON...&ROUTINE directive 8-8

&RESULT directive 8-7

& RETURN directive 8-7, 8-19

& REVERT directive 8-8

& ROUTINE directive 8-7

&SELECT directive 8-6

&SET_VAR directive 8-6, 8-8,
8-11

& SEVERITY directive 8-8

&SIGNAL directive 8-8

&STOP directive 8-7

*> 2-5

<*> 2-5

? 2-11

ABBREV 15-2

Abbreviations:
conventions for 2-7
defining your own 15-2, 15-3
system-defined 2-7
variables in 15-4

Aborting Batch jobs 10-5

Accessing remote systems 13-4

Addressing modes 5-5

Advanced text management 1-8

ALIAS 12-6

APPEND, Edi tor command 4-10

APPLIB 14-1

Appl ica t ion s u b r o u t i n e s 14-1

Appl ica t ions l i b r a r y 14-1

Archiving f i l e s on tape 12-10

Arguments, CPL:
&ARGS directive 8-6, 8-9
multiple arguments 8-10
omitted arguments 8-10

ASCII character set C-l

ASCII files 11-1

ASCII t a p e s , t r a n s l a t i o n 12-11

Assembly Language, The
Programmer's Companion 1-9

INDEX

ASSIGN (mag t ape d r ives) 12-4

ASSIGN 12-1

ASSIGN, using -ALIAS with 12-6

Assigning mag tape d r i v e s 12-4

Assigning p e r i p h e r a l dev ices
12-1

ATCH$$ 14-13

ATTACH 2-5 , 3-2, 3 -3 , 3-4

ATTACH, a c r o s s network 1 3 - 1 ,
13-3

ATTN key 2-10

AVAIL 3-7

Backslash (\) 2-11

Backup onto tape 12-10, 12-11

BASIC/VM Programmer's Guide 1-6

BASIC/VM, The Programmer's
Companion 1-9

BATCH command 10-8

Batch e r r o r messages D-24

Batch job execut ion environment
7 - 1 , 10-1

Batch job execut ion 10-1

Batch j o b s :
abor t ing 10-5
cance l l i ng 10-6
modifying 10-5
monitoring 10-6
r e s t a r t i n g 10-5
sending messages from , 10-7
submit t ing 10-2 '

Batch queues 10-8 , 10-9

BATGEN command 10-9

BCD t a p e s , t r a n s l a t i o n 12-11

Binary f i l e s 5-3

Binary search 14-9

BOTTOM, Editor command 4-6

BREAK key 2-10

Cal l ing conven t ions , for command
f i l e s 9-3

Cancell ing a spool r eques t 4-23

Cancell ing Batch j obs 10-5

Card reader 1 2 - 1 , 12-2

Cards, reading 12-2

Caret O 2-10

Chaining command files 9-3

CHANGE, Editor command 4-10

Changing directories 3-3

Changing file names 3-9

Changing the system prompts
15-1

Characters:
ASCII C-l
control 2-10, 2-11
reserved 2-12
special 2-10, 2-11, 4-2

Closing command files 9-5

Closing command output files
9-8

Closing files,^on cards 12-2

CMPF 11-7

CNAM$$ 14-14

CNAME 3-2, 3-9

INDEX

COBOL (compiler) 5-1

COBOL Reference Guide 1-4

COBOL:
code genera ted 5-5
compiler d e f a u l t s 5-4
c r e a t i n g source f i l e s 4 - 3 ,
4-6
documentation for 1-4
used with other languages 5-6
using condition mechanism with
16-2

Code g e n e r a t i o n 5-5

Combining l a n g u a g e s i n a program
5-6

Combining program modu les 5-6

COMINPUT o p t i o n s 9 -2

COMINPUT 9-2

Command e n v i r o n m e n t 1 5 - 1

Command f i l e o p e r a t i o n s 9 - 1

Command f i l e s :
c h a i n i n g 9 - 5
c l o s i n g 9 - 5 , 9-8
i n p u t 9 - 2
o u t p u t 9 -5
PHANTOM 9-10

Command o u t p u t f i l e s 9 - 5

Command P r o c e d u r e Language 8-1

Commands, a b b r e v i a t i n g 1 5 - 2

Commands:
$$ JOB 10-4
ABBREV 15-2
ASSIGN (mag t a p e d r i v e s) 12-4
ASSIGN 1 2 - 1
BATCH 10-8
BATGEN 10-9
CMPF 11-7
COBOL 5-1
COMINPUT 9-2
CCMOUTPUT 9 -5
CONCAT 4 - 2 5

CPL 8-3

DBG 16-2
DEFINE_GVAR 1 5 - 5
DELETE_VAR 1 5 - 5
DMSTK 1 6 - 2
ED 4 -3
F77 5-1
FILMEM 6-7
FTN 5-1
FUTIL 11-9
JOB 8 - 3 , 10 -2
LISTVAR 1 5 - 5
LOAD 6 - 1 , 6 - 6 , 6-7
MAGNET 1 2 - 1 1
MAGRST 1 2 - 1 1
MAGSAV 1 2 - 1 1 , 1 2 - 1 5
MESSAGE 2 - 1 3 , 1 5 - 6 , 15 -7
NETLINK 13-4
PASCAL 5-1
PHANTOM 8 - 3 , 9 - 1 0 , 9 - 1 1
PL1G 5-1
RDY 9 - 9 , 1 5 - 1
RESUME 6 - 7 , 7 - 3 , 8 -3
RLS 16-2
RPG 5-1
SEG 6 - 2 , 7 - 1
SET_VAR 1 5 - 5
SORT 11 -2
SPOOL 4 - 2 2
START 7 - 4 , 16 -2
TIME 9-8

Comments:
i n command f i l e s 9 -1
in s o u r c e c o d e 4 - 3

CCMOUTPUT f i l e 8 -3

CCMOUTPUT o p t i o n s 9 -6

CCMOUTPUT 9 - 5

Comparing files 11-7

Compatibility 2-1

Compiler defaults 5-4

Compiler messages 5-6

Compiling programs 5-1

X -

INDEX

Compressed f i l e s 11-1

CONCAT 4-25

Concatenating f i l e s for p r i n t i ng
4-25

Condition mechanism 16-1

Control ca rds 12-2

CONTROL key 2-10

CONTROL-P 2-11

CONTROL-Q 2-11

CONTROL-S 2-11

Cont ro l l ing f i l e access 3-10

Conventions, in documentation
2-7

Conversion subrou t ines 14-2

Copying f i l e s and d i r e c t o r i e s ,
11-10

Copying f i l e s onto mag tap^
12-10, 12-11

Copying mag t apes 12-10, 12-14

Correspondence management 1-8

CPL command 8-3

CPL Use r ' s Guide 1-4

CPL:
arguments used in 8-10
branching in 8-11
creating programs in 8-3
debugging 8-3, 8-4
directives 8-6, 8-7, 8-8
ending programs 8-18
executing directives in 8-2
executing programs in 8-3
features 8-1
functions used in 8-15
interpreter 8-1
null strings in 8-10
PRIMOS commands in 8-5

subsystems used with 8-16
variables used in 8-8

CREATE 3-2, 3-4

Creating "listing files" 5-4

Creating and modifying files
3-9

Cross reference listings 5-5

Current disk 2-5

CX 10-1

DAM f i l e s 14-10

DATE 3-7

DBG 16-2

DBMS A d m i n i s t r a t o r ' s Guide 1-7

DBMS COBOL Reference Guide 1-7

DBMS FORTRAN Reference Guide
1-7

DBMS Schema Reference Guide 1-7

DBMS 1-7

DC, LOAD subcommand 6-7

Decision-making, in CPL programs
8-11

DEFINE_GVAR command 15-5

DELETE 3-2 , 3-6 , 3-10

DELETE, Edi tor command 4-11

DELETE, SEG command 6-2-

DELETE_VAR command 15-5

Delet ing d i r e c t o r i e s 3-6, 11-10

Delet ing f i l e s 3-10, 11-10

X -

INDEX

Deleting programs 4-22

Determining f i l e s i z e 3-8

D i r e c t i v e s , CPL, summary of 8-6

D i r e c t o r i e s :
a t t a ch ing to 2 - 3 , 3-2, 3-3
copying 11-10
d e l e t i n g 3 -5 , 3-6, 11-10
l i s t i n g c o n t e n t s of 11-14
MFDs 2-2 , 2-3
pathnames of 2 - 3 , 2-5
p ro t ec t ing 3-5
segment 6 - 1 , 6-2
sub-UFDs 2-2
UFDs 2-2 , 2-3

Disk s o r t s 14-9

DISPLAY, TERM 2-12

Displaying Batch information
10-6

Displaying t he spool queue 4-23

Dis t r ibu ted Processing Terminal
Executive Guide 1-8

DMSTK 16-2

Double-quote (") 2-11

DPTX 1-8

DUNLQAD 4-3

DUNLOAD, Edi tor command 4-14

Dupl icat ing mag t a p e s 12-13

ED 4-1

Edit mode 4-1

Editor command summary 4-6, E-1

EDITOR commands:

EDITOR Commands:
APPEND 4-10
BOTTOM 4-6
CHANGE 4-10

DELETE 4-11
DUNLOAD 4-14
DUNLOAD 4-3
FILE 4-17, 4-2
FILE 4-3
FIND 4-3
FIND 4-8
IB 4-12
INSERT 4-12
listed E-1
LOAD 4-15
LOAD 4-3
LOCATE 4-8
MODIFY 4-3
NEXT 4-7
NFIND 4-8
OOPS 4-13
OVERLAY 4-3
POINT 4-7
PRINT 4-5
QUIT 4-16
RETYPE 4-12
SAVE 4-18, 4-2
SEMICO 4-3
TABSET 4-3
TOP 4-6
UNLOAD 4-15
UNLOAD 4-3

Editor 4-1

Elec t ron ic mail 1-8

ER! 2-6

ERASE c h a r a c t e r 2-12, 4-2

Error h a n d l i n g , in l i b r a r y
subrou t ines 14-11

Error messages :
Batch D-24
LOAD 'D-4
MESSAGE 15-8
Run-time D-7
SEG D-2

Er ro r -hand l ing , system 16-1

E r r o r s , in command f i l e s 9-5

E r r o r s , run- t ime 7-4

X -

INDEX

ERRPR$ 14 -11

Examining f i l e con t en t s 3-10

Executing PHANTOM f i l e s 9-11

Execution of R-mode memory images
7-3

Execution of segmented r u n f i l e s
7-2

F77 (compiler) 5-1

F i l e and d i r e c t o r y s t r u c t u r e s
2-2

F i l e Management System 2-2 , 2-3

F i l e system subrou t ines 14-1

F i l e system, using the 2 -2 , 2-3

F i l e types 11-1

F i l e u t i l i t y (FUTIL) 11-9

F i l e u t i l i t y 11-9

FILE, Editor command 4-17,
4-2

F i l e s :
ASCII 11-1
b ina ry 5 -3 , 11-1
changing names of 3-9
CQMINPUT 9-2
command 9-1
CCMOUTPUT 8-3 , 9-5
comparing 11-7
compressed 11-1
concatenat ing 4-25, 11-8
copying 11-10
c r e a t i n g 4-1
DAM 14-11
d e l e t i n g 11-10
d i sp lay ing a t te rminal 4-22
e d i t i n g 4-1
f ixed- l eng th 11-1
l i s t i n g a t t e rmina l 4-22
l i s t i n g 5-2, 5-4
merging 11-5 , 11-9
ob jec t 5-3
on ca rds 12-2

on d i s k s 2-2
on mag tape 12-1
on paper t ape 12-3
output 9-5
pathnames of 2 - 3 , 2-5
phantom 9-10
p r i n t i n g 4-22
p r o t e c t i n g 3-11
r e s t o r i n g to d i sk from tape
12-11 , 12-17
SAM 14-10
saving on tape 12-11 , 12-15
s o r t i n g 11-1
source 4 - 1 , 5-1

v a r i a b l e - l e n g t h 11-1

FILMEM, command 6-7

FIND 4-3

FIND, Editor command 4-8

Fixed-length f i l e s 11-1

FORMS Guide 1-7

FORMS 1-7

FORTRAN 77 Reference Guide 1-4
FORTRAN 77:

combined with o t h e r languages
5-6
compiler d e f a u l t s 5-4
documentation for 1-5
e d i t i n g source f i l e s 4 - 3 , 4-5
modes genera ted 5-5
o n - u n i t s in 16-2 , 16-4

FORTRAN Reference Guide 1-4

FORTRAN, The Programmer's
Companion 1-9

FORTRAN:
combined with* other languages
5-6
compiler d e f a u l t s 5-4
documentation for 1-4
e d i t i n g source f i l e s 4 - 3 , 4-5
modes genera ted 5-5
wr i t ing o n - u n i t s in 16-4,
16-5

X -

INDEX

FIN (compiler) 5-1

Funct ions , CPL 8-15

FUTIL command 11-9

FUTIL commands 11-10, 11-14

FUTIL 11-9

Global v a r i a b l e s 15-5

Hardware f e a t u r e s 2-1

HELP, SEG command 6-2

High-level l anguages :
compiling 5-1
documented 1-5
loading 6-1

Home d i r e c t o r y 2-5

I-mode, compiling 5-1

I-mode, loading 6-2

IB, Editor command 4-12

In-memory s o r t s 14-9

INITIALIZE, LOAD subcommand 6-7

INITIALIZE, SEG subcommand 6-3

Input mode 4-1

INSERT, Editor command 4-12

Interactive execution environment
7-1

Interpretive BASIC 1-6

INTRPT key 2-10

JOB command o p t i o n s 10-3

JOB command 8-3

JOB 10-2

Keys, for s o r t s 11-3 , 11-4

Keys, in l i b r a r y s u b r o u t i n e s
14-11

KILL c h a r a c t e r 2-12, 4-2

Languages:
BASIC 1-6, 1-9
COBOL 1-4, 4 - 3 , 4 -6 , 5 - 1 ,

5-2, 5-4, 5-5
CPL 8-1
FORTRAN 77 1-4, 4 - 3 , 4 - 5 ,

5 - 1 , 5-2, 5-4, 5-5
FORTRAN 1-5, 5 - 1 , 5-2, 5-4,

5-5 , 16-5
Pascal 5-1
PL/If Subset G 1-4, 4 - 3 , 4 -4 ,

5 - 1 , 5-2, 5-4, 5 -5 , 16-2 ,
16-4, 16-6

PMA 1-6, 1-9
RPG 1-4, 5-2, 5-4, 5-5

Ldn 12-6

L i b r a r i e s , 14-1

LIBRARY, LOAD subcommand 6-7

LIBRARY, SEG subcommand 6-3

LISTF 3-2, 3 -5 , 3-6

Lis t ing c o n t e n t s of d i r e c t o r i e s
11-14

Lis t ing f i l e s (c rea ted by
compilers) 5-4

Lis t ing programs a t l i n e p r i n t e r
4-22

L is t ing programs a t t e rmina l
4-22

LIST_VAR command 15-5

LOAD (Editor command) 4-3

LOAD (LOAD subcommand) 6-7

LOAD (SEG command) 6-2

X -

INDEX

LOAD (SEG subcommand) 6-3

LOAD and SEG Reference Guide
1-4

LOAD e r r o r messages D-4

LOAD subcommands 6-7

LOAD, Editor command 4-15

Loading I-^node programs 6-2

Loading procedures (with SEG)
6-3

Loading R-mode programs 6-6

Loading V-mode programs 6-2

LOCATE, Editor command 4-8

Logging out 3-11

Logical a l i a s e s , for mag t apes
12-6

Logical dev ice numbers, for mag
tape d r i v e s 12-6

Logical d i sk names 13-3

Logical d i sk 2-2

LOGIN 3-2 , 3-3

Login, a c r o s s network 13-1

Logout n o t i f i c a t i o n , PHANTOM
9-11

LOGOUT 3-2, 3 -11 , 3-12

Logout, PHANTOM 9-11

Mag tape utilities 12-3

Mag tapes 12-1

Mag tapes:
acceptable formats 12-11
assigning 12-4
copying 12-14
duplicating 12-13, 12-14

logical aliases for 12-6
mounting 12-8
operator assistabnce 12-8
releasing 12-10

MAGNET commands 12-11

MAGNET dialog 12-12

MAGNET 12-10

MAGRST dialog 11-17

MAGRST 12-11

MAGSAV dialog 12-15

MAGSAV 12-11

Management communications and
support 1-8

MAP, LOAD subcommand 6-7

MAP, SEG subcommand 6-3

Master f i l e d i r e c t o r y (MFD) 2-2

Mathematical sub rou t ines 14-2

Mergesorts 11-2, 11-5

Merging f i l e s 11-2, 11-5 , 11-8

Merging so r t ed f i l e s 11-2

MESSAGE command 2-13 , 15-6

Messages:
compiler 5-6
user-to-user 15-6

MFD 2-2

MIDAS u s e r ' s Guide 1-7

MIDAS 1-7

MODE, LOAD subcommand 6-7

MODIFY 4-3

X -

INDEX

Modifying files 3-9

Modifying lines of code 4-3

Monitoring Batch jobs 10-6

Monitoring Batch queues 10-8,
10-9

Monitoring speed of execution
9-8

Monitoring the spool queue 4-23

Mounting mag tapes 12-8

Moving lines of code 4-3

MRGF 11-9

MSORTS 14-1, 14-9

Nested &IF d i r e c t i v e 8-13

NETLINK command 13-4

Networks:
attaching across 13-3
defined 13-1
disk names 13-3
logging in across, 13-1
STATUS 13-2
using 13-1

NEXT, Editor command 4-7

NFIND, Editor command 4-8

Non-owner status 3-10

NONTAG sorts 11-2

NOXOFF 2-12

OAS 1-8

Object f i l e s 5-3

Office automat ion, documents for
1-8

OK: 2-6

OK, 2-6

On-un i t s :
a c t i o n s of 16-3
scope 16-4
system 16-2
u s e r - w r i t t e n 16-3
with FTN compiler 16-5
wr i t i ng 16-4

OOPS, Edi tor command 4-13

Operating system sub rou t i ne s
14-12

Operator i n t e r v e n t i o n in mag tape
assignments 12-8

Order of loading for LOAD 6-8

Order of loading for SEG 6-3

Ordinary pathname 2-3

Output, w r i t t e n to a f i l e 9-5

OVERLAY 4-3

Overlaying code 4-3

Owner s t a t u s 3-10

Paper tape reader 1 2 - 1 , 12-3

Paper t a p e , reading 12-3

Parsing s u b r o u t i n e s 14-2

Pascal (compiler) 5-1

PASCAL Reference Guide 1-4

PASSWD 3-2 , 3-5

Passwords 2 -5 , 3-5

Passwords, in l i b r a r y sub rou t ines
14-11

Pathnames 2 - 3 , 2-5

Pathnames, for access to files on
remote disks 13-1

X -

INDEX

Pdn 12-5, 12-6

Peripheral devices, assigning
12-1

Peripheral devices, releasing
12-2

PHANTOM command 8-3

PHANTOM 9-10, 9-11

PL/I Subset G Reference Guide
1-4

PL/I/ Subset G:
code genera ted 5-5
compiler d e f a u l t s 5-4
c r e a t i n g source f i l e s 4 -3 ,

4-4
documentation for 1-4
o n - u n i t s in 16-2, 16-2, 16-4,
16-6
used with o the r languages 5-6

PL1G (compiler) 5-1

PMA Programmer's Guide 1-6

POINT, Edi tor command 4-7

POWER 1-7

PRIME/POWER Guide 1-7

PRIMENET Guide 1-8

PRIMENET 1-8, 13-1

PRIMOS Commands Reference Guide
1-4

PRIMOS Commands, The Programmer's
Companion 1-9

PRIMOS 2-1

PRINT, Editor command 4-5

P r in t ing f i l e s 4-22, 4-25

Pr in t ing seve ra l f i l e s a s one
4-25

Prompts, changing 15-1

Prompts, system 2-6

PROP 3-8

PROTEC 3-2, 3-10, 3-11

Pro tec t ing f i l e s 3-10, 3-11

PRWF$$ 14-14

Public Data Networks 13-4

Purging f i l e s and d i r e c t o r i e s
11-10

Question mark (?) 2-11

Queues, Batch 10-8 , 10-9

Queues, Spool 4-23

QUIT, Editor command 4-16

QUIT, LOAD subcommand 6-7

QUIT, SEG subcommand 6-3

Quotation marks 2-11

R-mode, compiling 5-1

R-mode, loading 6-6

RDY 9-9 , 15-1

Reading mag t a p e s 12-10, 12-11

Reading punched c a r d s 12-2

Reading punched paper t ape 12-3

Receive s t a t e s 15-7

Receiving messages a t your
terminal 15-6 , 15-7

Rela t ive pathnames 2-5

Rel inquishing p e r i p h e r a l dev ices
12-2

10

INDEX

Relinquishing tape d r i v e s 12-10

Remote Job Entry Guide 1-8

Remote log in 13-1

Renaming programs 4-22

Reserved c h a r a c t e r s 2-12

Resolving d i s c r e p a n c i e s in f i l e s :
with CMPF 11-7
with MRGF 11-8

Restoring f i l e s from tape to d isk
12-11, 12-17

RESU$$ 14-16

RESUME command 8-3

RESUME 6-7, 7-3

RETURN key 2-10

RETURN, SEG subcommand 6-3

RETYPE, Edi tor command 4-12

Ring p r o t e c t i o n system 2-2

RLS 16-2

RPG (compiler) 5-1

RPG II Debugging Template 1-4

RPG II Reference Guide 1-4

RUBOUT key 2-10

Run-time e r r o r messages D-7

Running j obs under Batch 10-1

Running R-mode programs 7-3

Running V-mode and I-mode
programs 7-2

SAM f i l e s 14-10

SAVE, Edi tor command 4-18 ,
4-2

SAVE, LOAD subcommand 6-7

SAVE, SEG subcommand 6-3

Saving f i l e s on tape 12-11 ,
12-15

Saving f i l e s 4-2

Search and s o r t l i b r a r i e s 1 4 - 1 ,
14-8

Secur i ty for d i r e c t o r i e s 3-5

Secu r i t y for f i l e s 3-10, 3-11

SEG commands and subcommands
6-2

SEG e r r o r messages D-2

SEG 6 - 1 , 7-2

Segment directories, creating
6-1

Segment directories, deleting
6-2

Segmentation 2-2, 6-1

SEMICO 4-3

Semicolon, a s s p e c i a l c h a r a c t e r
2-12, 4 -2 , 4-3

Sending messages from Batch j o b s
10-7

Sending messages from your
te rminal 15-6

Sending te rmina l messages 2-13

Se t t ing t e rmina l c h a r a c t e r i s t i c s
2-12

SET VAR command 15-5

X - 11

INDEX

SIZE 3-2, 3-9

3LIST 3-2, 3-10

Sort c h a r a c t e r i s t i c s 14-9

SORT command 11-1

Sort l i b r a r i e s , 14 -1 , 14-8

Sort ing f i l e s 11-1

Source-Level Debugger Reference
Guide 1-6

Special c h a r a c t e r s 2-10, 2 -11 ,
4-2

Special t e rmina l keys 2-10

SPOOL 4-22

SPSS Guide 1-7

SPSS 1-7

SRCH$$ 14-16

SRTLIB 1 4 - 1 , 14-8

START 7-4 , 16-2

STATUS commands 3-7

STATUS DISKS 13-3

STATUS informat ion , PHANTOM
9-12

STATUS, network 13-2

S t a t u s , nonowner 3-10

S t a t u s , owner 3-10

S t r ing manipulat ion subrout ines
14-2

Sub-UFD 2-2

Subroutine l i b r a r i e s 14-1

Subrout ines Reference Guide 1-4

Subrout ines , for cond i t i on
mechanism i n t e r f a c e 16-4

Subsystems, used with CPL 8-16

System A d m i n i s t r a t o r ' s Guide
1-6

System Admin i s t r a to r , The
Programmer's Companion 1-9

System A r c h i t e c t u r e Reference
Guide 1-6

System prompts 2-6

Tabulat ion 4 - 1 , 4 - 3 , 4 -4 , 4-5

TAG s o r t s 11-2

Tape d r i v e s :
assigned by o p e r a t o r 12-4,

12-8
assigned by user 12-4
l o g i c a l a l i a s e s for 12-4
opera tor a s s i s t a n c e 12-8
r e l e a s i n g 12-10

TERM command o p t i o n s 2-12

TERM command 2-12

Terminal c o n t r o l s 2-9

Terminal keyboard 2 -8 , 2-9

Terminating Batch j obs 10-5

TIME 3-8, 9-8

TOP, Editor command 4-6

TREDEL 3-6

Treenames 2-3

TSRC$$ 14-17

Type-ahead 2-6

12

INDEX

Typographic3], conventions 2-7

UFD 2-2

Underscore (_) 2-11

UNLOAD 4-3

UNLOAD, Editor command 4-15

Up-arrow C) 2-10

User f i l e d i r e c t o r y (UFD) 2-2

User query sub rou t ines 14-2

V-mode, compiling 5-1

V-mode, loading 6-2

VAPPLB 14-1

Var iab le - l eng th f i l e s 11-1

Var i ab l e s , a t command l e v e l
15-5

V a r i a b l e s :
g loba l 15-5
in a b b r e v i a t i o n s 15-4

Vi r tua l memory 2-1

VMSORTS 1 4 - 1 , 14-9

Volume 2-2

VSRTLI , 1 4 - 1 , 14-8

Word process ing 1-8

Writing f i l e s from tape
12-11 , 12-17

Writing mag t a p e s 12-11

Writing ou tpu t t o a f i l e 9-5

XOFF 2-12

X - 13

r̂

-'-»•••&•.

	Front Cover
	
	Title Page
	i
	Copyright
	ii
	Contents
	iii
	iv
	v
	vi
	Part I
	Using Prime Documentation
	Section 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	Part II
	Writing and Running Programs
	
	Section 2
	Before You Get Started
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	Section 3
	Accessing PRIMOS
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	Section 4
	Creating Source Files
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	Section 5
	Compiling Programs
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	Section 6
	Load Generation
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	Section 7
	Running Programs Interactively
	7-1
	7-2
	7-3
	7-4
	Section 8
	The Basics of CPL
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	Section 9
	Command Files and Phantoms
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	Section 10
	Batch Job Processing
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	Part III
	System Facilities
	Section 11
	File-handling Utilities
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	Section 12
	Using Tapes and Cards
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	Section 13
	Using PRIMENET
	13-1
	13-2
	13-3
	13-4
	13-5
	Section 14
	Subroutine Libraries
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	Part IV
	Altering the Command Environment
	Section 15
	Customizing Your Environment
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	Section 16
	Using the Condition Mechanism
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	Appendices
	Appendix A
	Glossary of Prime Concepts and Conventions
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	Appendix B
	System Defaults and Constants
	B-1
	B-2
	Appendix C
	ASCII Character Set
	C-1
	C-2
	C-3
	C-4
	Appendix D
	Error Messages
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	Appendix E
	Editor Command Summary
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	Back Cover

